首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The miscibility of a triblock copolymer poly(ethylene oxide)-poly(dimethylsiloxane)-poly(ethylene oxide) with syndiotactic and isotactic poly(methylmethacrylate) wasstudied. Although isotactic poly(methyl methacrylate) (PMMA) was miscible with poly(ethylene oxide) (PEO) in the pure state, it was immiscible with the PEO end blocks in the copolymer. In comparison, the syndiotactic poly(methyl methacrylate) (sPMMA) was miscible with the PEO blocks as indicated by melting point depression, decrease in crystallinity, and slower rate of spherulite growth of PEO. When blends of the triblock copolymer were cooled to low temperatures, the poly(dimethylsiloxane) (PDMS) middle block which resided in the interlamellar region of PEO spherulites also crystallized; the development of PDMS crystals was clearly suppressed at high sPMMA contents.On leave from Union Chemical Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan  相似文献   

2.
T. SongS.H. Goh  S.Y. Lee 《Polymer》2003,44(8):2563-2567
Double-C60-end-capped poly(ethylene oxide) (PEO) possesses good mechanical properties arising from a network-like structure due to the aggregation of C60. The tensile strength is about 20 MPa, the elongation at break exceeds 640% and the fracture toughness is more than 110 MJ/m3. The material also possesses shape recovery ability. In contrast, single-C60-end-capped PEO does not possess good mechanical properties.  相似文献   

3.
Jia-Hsien Lin 《Polymer》2006,47(19):6826-6835
Crystalline/crystalline blend systems of poly(ethylene oxide) (PEO) and a homologous series of polyesters, from poly(ethylene adipate) to poly(hexamethylene sebacate), of different CH2/CO ratios (from 3.0 to 7.0) were examined. Correlation between interactions, miscibility, and spherulite growth rate was discussed. Owing to proximity of blend constituents' Tg's, the miscibility in the crystalline/crystalline blends was mainly justified by thermodynamic and kinetic evidence extracted from characterization of the PEO crystals grown from mixtures of PEO and polyesters at melt state. By overcoming experimental difficulty in assessing the phase behavior of two crystalline polymers with closely spaced Tg's, this work has further extended the range of polyesters that can be miscible with PEO. The interaction parameters (χ12) for miscible blends of PEO with polyesters [poly(ethylene adipate), poly(propylene adipate), poly(butylene adipate), and poly(ethylene azelate) with CH2/CO = 3.0-4.5] are all negative but the values vary with the polyester structures, with a maximum for the blend of PEO/poly(propylene adipate) (CH2/CO = 3.5). The values of interactions are apparently dependent on the structures of the polyester constituent in the blends; interaction strength for the miscible PEO/polyester systems correlate in the same trend with the PEO crystal growth rates in the blends.  相似文献   

4.
A novel method of introducing a synthesized organic nitrogenous compound 2,6 (N-pyrazolyl)isonicotinic acid (BNIN) and its effect on the conduction behavior of poly(vinylidene fluoride) (PVdF)–poly(ethylene oxide) (PEO) polymer-blend electrolyte with potassium iodide (KI) and iodine (I2) and the corresponding performance of the dye-sensitized solar cells (DSSCs) were studied. A systematic investigation of the blends using FTIR provides evidence of interaction of BNIN with the polymer. Differential scanning calorimetry (DSC) study proves the miscibility of these polymers. Due to the coordinating and plasticizing effects of BNIN, the ionic conductivity of polymer blend electrolytes is enhanced. The efficiency of DSSC using BNIN doped polymer blend electrolyte was 7.3% under an illumination of 60 mW cm−2 were observed for the best performance of a solar cell in this work.  相似文献   

5.
Miscibility and crystallization behavior have been investigated in blends of poly(butylene succinate) (PBSU) and poly(ethylene oxide) (PEO), both semicrystalline polymers, by differential scanning calorimetry and optical microscopy. Experimental results indicate that PBSU is miscible with PEO as shown by the existence of single composition dependent glass transition temperature over the entire composition range. In addition, the polymer-polymer interaction parameter, obtained from the melting depression of the high-Tm component PBSU using the Flory-Huggins equation, is composition dependent, and its value is always negative. This indicates that PBSU/PEO blends are thermodynamically miscible in the melt. The morphological study of the isothermal crystallization at 95 °C (where only PBSU crystallized) showed the similar crystallization behavior as in amorphous/crystalline blends. Much more attention has been paid to the crystallization and morphology of the low-Tm component PEO, which was studied through both one-step and two-step crystallization. It was found that the crystallization of PEO was affected clearly by the presence of the crystals of PBSU formed through different crystallization processes. The two components crystallized sequentially not simultaneously when the blends were quenched from the melt directly to 50 °C (one-step crystallization), and the PEO spherulites crystallized within the matrix of the crystals of the preexisted PBSU phase. Crystallization at 95 °C followed by quenching to 50 °C (two-step crystallization) also showed the similar crystallization behavior as in one-step crystallization. However, the radial growth rate of the PEO spherulites was reduced significantly in two-step crystallization than in one-step crystallization.  相似文献   

6.
The miscibility of Chitosan (CS) and poly(ethylene oxide) (PEO) in their blends and the effect of K+ and Ca2+ doping on the CS/PEO interaction have been investigated in this work. CS and PEO appeared to be miscible and the DSC analysis suggested the Flory-Huggins interaction parameter χAB to be −0.21. Doping of K+ and Ca2+ into the CS/PEO blend matrix enhanced the cooperative interaction between CS and PEO and this enhancement was larger for Ca2+ than for K+. The difference between Ca2+ and K+ possibly reflects a stronger multi-valence interaction of Ca2+ with the amino and hydroxyl groups of CS as well as the ether groups of PEO to form a stable CS/Ca2+/PEO complex and a less significant interaction of K+, as suggested by DSC, WAXD and FTIR results. MD simulations clearly indicated the correlation between the dynamic behavior and the interaction of K+ and Ca2+ in the CS/PEO blend matrix.  相似文献   

7.
Han LüSixun Zheng 《Polymer》2003,44(16):4689-4698
Thermosetting polymer blends composed of polybenzoxazine (PBA-a) and poly(ethylene oxide) (PEO) were prepared via in situ curing reaction of benzoxazine (BA-a) in the presence of PEO, which started from the initially homogeneous mixtures of BA-a and PEO. Before curing, the BA-a/PEO blends displayed the single and composition-dependant glass transition temperatures (Tg's) in the entire blend composition, and the equilibrium melting point depression was also observed in the blends. It is judged that the BA-a/PEO blends are completely miscible. The miscibility was mainly ascribed to the contribution of entropy to mixing free energy since the molecular weight of BA-a is rather low. However, phase separation occurred after curing reaction at the elevated temperature, which was confirmed by differential scanning calorimetry (DSC) and scanning electronic microscopy (SEM). It was expected that the PBA-a/PEO blends would be miscible since PBA-a possesses a great number of phenolic hydroxyls in the molecular backbone, which are potential to form the intermolecular hydrogen bonding interactions with oxygen atoms of PEO and thus would fulfill the miscibility of the blends. To interpret the experimental results, we investigated the variable temperature Fourier transform infrared spectroscopy (FTIR) of the blends via model compound. The FTIR results indicate that the phenolic hydroxyl groups could not form the efficient intermolecular hydrogen bonding interactions at the elevated temperatures (e.g. the curing temperatures), i.e. the phenolic hydroxyl groups existed mainly in the non-associated form in the system. Therefore, the decrease of the mixing entropy still dominates the phase behavior of thermosetting blends at the elevated temperature.  相似文献   

8.
Han Lü  Guohua Tian 《Polymer》2004,45(9):2897-2909
Poly(hydroxyether sulfone) (PHES) was synthesized through polycondensation of bisphenol S with epichlorohydrin. It was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy and differential scanning calorimetry (DSC). The miscibility in the blends of PHES with poly(ethylene oxide) (PEO) was established on the basis of the thermal analysis results. DSC showed that the PHES/PEO blends prepared by casting from N,N-dimethylformamide (DMF) possessed single, composition-dependent glass transition temperatures (Tgs), indicating that the blends are miscible in amorphous state. At elevated temperatures, the PHES/PEO blends underwent phase separation. The phase behavior was investigated by optical microscope and the cloud point curve was determined. A typical lower critical solution temperature behavior was observed in the moderate temperature range for this blend system. FTIR studies indicate that there are the competitive hydrogen bonding interactions upon adding PEO to the system, which was involved with the intramolecular and intermolecular hydrogen bonding interactions, i.e. -OH?OS, -OH?-OH and -OH versus ether oxygen atoms of PEO between PHES and PEO. In terms of the infrared spectroscopic investigation, it is judged that from weak to strong the strength of the hydrogen bonding interactions is in the following order: -OH?OS, -OH?-OH and -OH versus ether oxygen atoms of PEO.  相似文献   

9.
Zhonglin Luo 《Polymer》2010,51(1):291-11052
The miscibility of poly(ethylene oxide) (PEO)/poly(vinyl chloride) (PVC) blends are investigated by atomistic molecular dynamics and mesoscale dissipative dynamics simulations. The specific volumes of three PEO/PVC blends (with weight ratio at 70/30, 50/50 and 30/70) as well as pure PEO and PVC are examined as a function of temperature. The glass transition temperatures are estimated to be 251, 268, 280, 313 and 350 K for pure PEO, PEO/PVC 70/30, 50/50, 30/70 and pure PVC. Among different energy contributions, the torsion and van der Waals energies exhibit pronounced kinks versus temperature. The Flory-Huggins parameters determined from the cohesive energy densities and the radial distribution functions of the inter-molecular atoms suggest that PEO/PVC 70/30 and 30/70 blends are more miscible than 50/50 blend. This is further supported by the morphologies of PEO/PVC blends, in which the 50/50 blend exhibits segregated domains implying a weak phase separation. Hydrogen bonds are found to form between O atoms of PEO and H atoms of PVC, with a larger degree in PEO/PVC 70/30 and 30/70 blends than in 50/50 blend. The addition of PVC into PEO suppresses the mobility of PEO chains, which is consistent with the experiment observation of decreased crystallization rate as well as crystallization temperature of PEO.  相似文献   

10.
The miscibility and crystallization behavior of poly(ethylene oxide) (PEO) and poly(styrene‐co‐maleic anhydride) ionomer (SMAI) blends were studied by the dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). This study has demonstrated that the presence of ion–dipole interactions enhances the miscibility of otherwise immiscible polymers in the PEO and high molecular weight poly(styrene‐co‐maleic anhydride) (SMA). The effect of ion–dipole interactions on enhancing miscibility is confirmed by the presence of a single glass transition temperature (Tg) and a depression of the equilibrium melting temperature of the PEO component. The equilibrium melting temperature of PEO in the blends are obtained using Hoffman‐Weeks plots. The interaction energy density, β, is calculated from these data using the Nishi‐Wang equation. The results suggest that PEO and SMAI blends are thermodynamically miscible in the melt. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1–7, 2000  相似文献   

11.
Poly(vinyl acetate) (PVAc)/poly(ethylene oxide) (PEO) blends were prepared by casting from either benzene or chloroform. The solvent effects on the crystallization behavior and thermodynamic properties of the blends were studied by the differential scanning calorimeter (DSC). Two grades of PEO with different molecular weights (PEO200 with Mw = 200,000 g/mol and PEO2 with Mn = 2000 g/mol) were used in this work. The thermal analysis revealed that the blends cast from either benzene or chloroform were miscible in the molten state. The crystallization of PEO in the benzene-cast blends was more easily suppressed than it was in the chloroform-cast blends. Furthermore, the benzene-cast blends showed a greater negative value of Flory-Huggins interaction parameter than those cast from chloroform in the PVAc/PEO200 poly-blend system. It was supposed that the benzene-cast blends had more homogeneous morphology. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 411–421, 1997  相似文献   

12.
DSC and optical microscopy were used to determine the miscibility and crystallinity of blends of poly(ethylene oxide) (PEO) with poly(4-vinylphenol-co-2-hydroxyethyl methacrylate) (PVPh-HEM). A single glass transition temperature was observed for all blends, indicating miscibility. A progressive decrease in the degree of crystallinity and in the size of the PEO spherullites is observed, as PVPh-HEM is added. FTIR was used to probe the intermolecular specific interactions of the blends and the miscibility of the blend is mainly attributed to PVPh-HEM/PEO intermolecular interactions via hydrogen bonding.  相似文献   

13.
E El Shafee 《Polymer》2002,43(3):921-927
The miscibility of atactic poly(epichlorohydrin) (aPECH) with poly(vinyl acetate) (PVAc) was examined under two different conditions: (i) in dilute solution, using vicometeric measurements and (ii) as cast films, using differential scanning calorimetric (DSC) and FT-infrared spectroscopy. Phase separation on heating, i.e. lower critical solution temperature (LCST) behavior of the aPECH/PVAc blends was examined by the measurement of transmitted light intensity against temperature. From viscosity measurements, the Krigbaum-Wall polymer-polymer interaction (ΔB) was evaluated. The DSC results show that the aPECH/PVAc blends are miscible as evidenced by the observation of a single composition-dependent glass-transition temperature (Tg) which is well described by the Couchman and Gordon Taylor models. The Flory-Huggins interaction parameter (χ12) calculated from the Tg-method was negative and equal to −0.01, indicating a relatively low interaction strength. The FT-IR results match very well with those of DSC. The cloud point phenomenon is thermodynamically driven but phase separation, once taken place, is diffusion controlled in normal accessible time.  相似文献   

14.
In this work the miscibility and the carbon dioxide transport properties of a bacterial, isotactic poly(3-hydroxybutyrate) (iPHB) and its blends with a copolymer of epichlorohydrin and ethylene oxide (ECH-co-EO) have been studied. Blends were prepared by solution/precipitation. The aim to obtain miscible blends of iPHB with a rubbery second component (such as the ECH-co-EO copolymer) is to have mixtures with glass transition temperatures below room temperature. In these conditions, the iPHB chains not involved in the crystalline regions retain its mobility. This mobility seems to be necessary for the attack of microorganisms and the corresponding biodegradability.Miscibility is the general rule of these mixtures, as shown by the existence of a single glass transition temperature for each blend and by the depression of the iPHB melting point. The interaction energy density stabilising the mixtures, calculated using the Nishi-Wang treatment, was similar to those of other polymer mixtures involving different polyesters and poly(epichlorohydrin) (PECH) and ECH-co-EO copolymers. The so-called binary interaction model has been used in order to simulate the evolution of the interaction energy density with the ECH-co-EO copolymer composition. Previously reported experimental data on blends of iPHB with PECH and poly(ethylene oxide) (PEO) have been used to quantify the required segmental interaction energy densities.In the determination of the CO2 transport properties of the mixtures, only iPHB rich blends containing up to 40% of copolymer were considered. The effect of the ECH-co-EO copolymer is to increase the sorption and the diffusion of the penetrant (and, consequently, the permeability) with respect to the values of the pure iPHB. This is primarily due to the reduction of the global crystallinity of the blends and to the low barrier character of the ECH-co-EO copolymer. Sorption data can be reasonably reproduced using an extension of the Henry's law to ternary systems.  相似文献   

15.
A dendritic morphology, induced by miscibility with strong intermolecular interaction between poly(ethylene oxide) (PEO) and bioresourceful tannin [tannic acid (TA)]. Mechanism was investigated by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy, wide-angle X-ray diffraction, and polarized optical microscopy. The cell crystallography preference in correlation to the intermolecular interaction in the dendrites in PEO/TA (70/30) blend was analyzed. Dendritic morphology was more distinct at PEO/TA = 70/30 composition, where the spherulitic growth rate showed a highly nonlinear relationship with respect to crystallization time (R α t 1/2). Diffusion limitation mechanism caused by the crystallography preference attributed to the strong intermolecular interaction between PEO and TA was at work.  相似文献   

16.
The miscibility of poly(tetrahydrofurfuryl methacrylate) (PTHFMA) and poly(tetrahydropyranyl-2-methacrylate) (PTHPMA) with some chlorine-containing polymers was studied by differential scanning calorimetry (DSC). PTHPMA was found to be miscible with poly(vinyl chloride) (PVC), polyepichlorohydrin (PECH), and a vinylidene chloride/vinyl chloride copolymer [P (VDC/VC)] and only partially miscible with an epichlorohydrin/ethylene oxide copolymer [P (ECH/EO)]. PTHFMA was shown to be miscible with PECH and P(VDC/VC), but its miscibility with P(ECH/EO) is composition-dependent. Information about interactions between components in PTHFMA/P (VDC/VC) and PTHPMA/P(VDC/VC) blends was estimated from melting-point depression. The interaction parameters B were found to be ?1.7 and ?3.6 J/cm3 for PTHFMA/P(VDC/VC) and PTHPMA/P(VDC/VC) blend systems, respectively. The miscibility behavior of PTHFMA and PTHPMA is compared to that of poly(cyclohexyl methacrylate).  相似文献   

17.
The miscibility of high molecular weight poly(ethylene oxide) blends with poly(3‐hydroxypropionic acid) and poly(3‐hydroxybutyric acid) (P(3HB)) has been investigated by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and high‐resolution solid state 13C nuclear magnetic resonance (NMR). The DSC thermal behaviour of the blends revealed that the binary blends of poly(ethylene oxide)/poly(3‐hydroxypropionic acid) (OP blends) were miscible over the whole composition range while the miscibility of poly(ethylene oxide)/poly(3‐hydroxybutyric acid) blends (OB blends) was dependent on the blend composition. OB blends were found to be partly miscible at the middle P(3HB) contents (25 %, 50 %) and miscible at other P(3HB) contents (10 %, 75 % and 90 %). Single‐phase behaviour for OP blends and phase separation behaviour for OB blends were observed from DMTA. The results from NMR spectroscopy revealed that the two components in the OP50 blend were intimately mixed on a scale of about 35 nm, while the domain sizes in the OB blend with a P(3HB) content of 50 % were larger than about 32 nm. © 2000 Society of Chemical Industry  相似文献   

18.
Blends of poly(ethylene oxide) (PEO) with poly(ε-caprolactone) (PCL), both semicrystalline polymers, were prepared by co-dissolving the two polyesters in chloroform and casting the mixture. Phase contrast microscopy was used to probe the miscibility of PEOB/PCL blends. Experimental results indicated that PEO was immiscible with PCL because the melt was biphasic. Crystallization of PEO/PCL blends was studied by differential scanning calorimetry and analyzed by the Avrami equation. The crystallization rate of PEO decreased with the increase of PCL in the blends while the crystallization mechanism did not change. In the case of the isothermal crystallization of PCL, the crystallization mechanism did not change, and the change in the crystallization rate was not very big, or almost constant with the addition of PEO, compared with the change of the crystallization rate of PEO.  相似文献   

19.
Films of composites of chitosan/poly(aminopropyltriethoxysilane)/poly(ethylene oxide) (CHI/pAPS/PEO) containing a fixed amount of lithium salt are studied. The ternary composition diagram of the composites, reporting information on the mechanic stability, the transparence and the electrical conductivity of the films, shows there is a window in which the molecular compatibility of the components is optimal. In this window, defined by the components ratios CHI/PEO 3:2, pAPS/PEO 2:3 and CHI/PEO 1:2, there is a particular composition Lix(CHI)1(PEO)2(pAPS)1.2 for which the conductivity reaches a value of 1.7 × 10−5 S cm−1 at near room temperature. Considering the balance between the Lewis acid and basic sites available in the component and the observed stoichiometry limits of formed polymer complexes, the conductivity values of these products may be understood by the formation of a layered structure in which the lithium ions, stabilized by the donors, poly(ethylene oxide) and/or poly(aminopropyltriethoxysilane), are intercalated in a chitosan matrix.  相似文献   

20.
The miscibility of high molecular weight poly( -lactide) PLLA with high molecular weight poly(ethylene oxide) PEO was studied by differential scanning calorimetry. All blends containing up to 50 weight% PEO showed single glass transition temperatures. The PLLA and PEO melting temperatures were found to decrease on blending, the equilibrium melting points of PLLA in these blends decreased with increasing PEO fractions. These results suggest the miscibility of PLLA and PEO in the amorphous phase. Mechanical properties of blends with up to 20 weight% PEO were also studied. Changes in mechanical properties were small in blends with less than 10 weight% PEO. At higher PEO concentrations the materials became very flexible, an elongation at break of more than 500% was observed for a blend with 20 weight% PEO. Hydrolytic degradation up to 30 days of the blends showed only a small variation in tensile strength at PEO concentrations less than 15 weight%. As a result of the increased hydrophilicity, however, the blends swelled. Mass loss upon degradation was attributed to partial dissolution of the PEO fraction and to an increased rate of degradation of the PLLA fraction. Significant differences in degradation behaviour between PLLA/PEO blends and (PLLA/PEO/PLLA) triblock-copolymers were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号