首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of Zr-doped ordered mesoporous Al2O3 with various Zr contents were synthesized by evaporation-induced self-assembly strategy and the Ni-based catalysts supported on these Al2O3 materials were prepared by impregnation method. These catalysts with large specific surface area, big pore volume, uniform pore size possess excellent catalytic performance for the low-temperature carbon dioxide reforming of methane. The activities of these catalysts were tested in carbon dioxide reforming of methane reaction with temperature increasing from 500 to 650?°C and the stabilities of these catalysts were evaluated for long time reaction at 650?°C. It was found that when Zr/(Zr?+?Al) molar ratio?=?0.5%, the Ni/0.5ZrO2–Al2O3 catalyst showed the highest activity, and exhibited superior stabilization compared to the Ni-based catalyst supported on traditional ordered mesoporous Al2O3. The “confinement effect” from mesoporous channels of alumina matrix is helpful to stabilize the Ni nanoparticles. As a promoter, Zr could stabilize the ordered mesoporous framework by reacting with Al2O3 to form ZrO2–Al2O3 solid solution. Since ZrO2 enhances the dissociation of carbon dioxide, more oxygen intermediates are given to remove the carbon formed during the reaction.  相似文献   

2.
Herein, we studied the influence of calcination temperature (500–800 °C) of Ni/CeO2 and Ni/Ce0.8Zr0.2O2 catalysts on the specific surface area, pore volume, crystalline size, lattice parameter, chemical bonding and oxidation states, nickel dispersion and CH4/CO production rate in CO2 methanation. In general, the catalytic performance revealed that Zr doping catalysts could increase the CH4 production rate. Combined with the production rate and the characterizations results, we found that the combination of nickel dispersion, peak area of CO2–TPD and OII/(OII + OI)) play the critical role in increasing the CH4 production rate. It is well to be mentioned that the CO production rate is strongly influenced by the nickel dispersion. Furthermore, the in-situ DRIFTS confirmed that the CO originates from the decomposition of H-assisted formate species.  相似文献   

3.
The production of isophthalic acid (IPA) from the oxidation of m-xylene (MX) by air is catalyzed by H3PW12O40 (HPW) loaded on carbon and cobalt. We used H2O2 solution to oxidize the carbon to improve the catalytic activity of HPW@C catalyst. Experiments reveal that the best carbon sample is obtained by calcining the carbon at 700 °C for 4 h after being impregnated in the 3.75% H2O2 solution at 40 °C for 7 h. The surface characterization displays that the H2O2 modification leads to an increase in the acidic groups and a reduction in the basic groups on the carbon surface. The catalytic capability of the HPW@C catalyst depends on its surface chemical characteristics and physical property. The acidic groups play a more important part than the physical property. The MX conversion after 180 min reaction acquired by the HPW@C catalysts prepared from the activated carbon modified in the best condition is 3.81% over that obtained by the HPW@C catalysts prepared from the original carbon. The IPA produced by the former is 46.2% over that produced by the latter.  相似文献   

4.
CO2 methanation over supported ruthenium catalysts is considered to be a promising process for carbon capture and utilization and power-to-gas technologies. In this work 4% Ru/Al2O3 catalyst was synthesized by impregnation of the support with an aqueous solution of Ru(OH)Cl3, followed by liquid phase reduction using NaBH4 and gas phase activation using the stoichiometric mixture of CO2 and H2 (1:4). Kinetics of CO2 methanation reaction over the Ru/Al2O3 catalyst was studied in a perfectly mixed reactor at temperatures from 200 to 300 °C. The results showed that dependence of the specific activity of the catalyst on temperature followed the Arrhenius law. CO2 conversion to methane was shown to depend on temperature, water vapor pressure and CO2:H2 ratio in the gas mixture. The Ru/Al2O3 catalyst was later tested together with the K2CO3/Al2O3 composite sorbent in the novel direct air capture/methanation process, which combined in one reactor consecutive steps of CO2 adsorption from the air at room temperature and CO2 desorption/methanation in H2 flow at 300 or 350 °C. It was demonstrated that the amount of desorbed CO2 was practically the same for both temperatures used, while the total conversion of carbon dioxide to methane was 94.2–94.6% at 300 °C and 96.1–96.5% at 350 °C.  相似文献   

5.
Methane activation through oxychlorination is in the spotlight due to the relatively mild reaction conditions at atmospheric pressure and in the temperature range of 450–550 °C. Although CO2 is known to exhibit good activity for methane oxychlorination, significant amounts of by-products such as CO2, CO and carbon deposits are produced during the reaction over CO2. We investigated the effect of iron in FeOx/CO2 catalysts on methane oxychlorination. FeOx/CO2 with 3 wt% iron shows the maximum yield at 510 °C with 23% conversion of methane and 65% selectivity of chloromethane. XRD and H2 TPR results indicate that iron-cerium solid solution was formed, resulting in the production of more easily reduced cerium oxide and the suppression of catalysts sintering during the reaction. Furthermore, the selectivity of by-products decreased more significantly over FeOx/CO2 than cerium oxide, which can be attributed to the facilitation of HCl oxidation arising from the enhanced reducibility of the former sample.  相似文献   

6.
Ce1?x Cu x O2 oxide solid solution catalysts with different Ce/Cu mole ratios were synthesized by the one-pot complex method. The prepared Ce1?x Cu x O2 catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and H2 temperature-programmed reduction (H2-TPR). Their catalytic properties were also investigated by catalytic combustion of phenyl volatile organic compounds (PVOCs: benzene, toluene, xylene, and ethylbenzene) in air. XRD analysis confirmed that the CuO species can fully dissolve into the CeO2 lattice to form CeCu oxide solid solutions. XPS and H2-TPR results indicated that the prepared Ce1?x Cu x O2 catalysts contain abundant reactive oxygen species and superior reducibility. Furthermore, the physicochemical properties of the prepared Ce1?x Cu x O2 catalysts are affected by the Ce/Cu mole ratio. The CeCu3 catalyst with Ce/Cu mole ratio of 3.0 contains abundant reactive oxygen species and exhibits superior catalytic combustion activity of PVOCs. Moreover, the ignitability of PVOCs is also affected by the respective physicochemical properties. The catalytic combustion conversions of ethylbenzene, xylene, toluene, and benzene are 99%, 98.9%, 94.3%, and 62.8% at 205, 220, 225, and 225 °C, respectively.  相似文献   

7.

Abstract  

Ce X Zr1−X O2 catalysts with different cerium content (X) (X = 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0) were prepared by a sol–gel method for use in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Among these catalysts, Ce0.6Zr0.4O2 was found to show the best catalytic performance. In order to enhance the acidity and basicity of Ce0.6Zr0.4O2 catalyst, Ga2O3 was supported on Ce0.6Zr0.4O2 (XGa2O3/Ce0.6Zr0.4O2 (X = 1, 5, 10, and 15)) by an incipient wetness impregnation method with a variation of Ga2O3 content (X, wt%). Effect of acidity and basicity of Ga2O3/Ce0.6Zr0.4O2 on the catalytic performance in the direct synthesis of dimethyl carbonate was investigated using NH3-TPD and CO2-TPD experiments. Experimental results revealed that both acidity and basicity of the catalysts played a key role in determining the catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Large acidity and basicity of the catalyst facilitated the formation of dimethyl carbonate. The amount of dimethyl carbonate produced over XGa2O3/Ce0.6Zr0.4O2 catalysts increased with increasing both acidity and basicity of the catalysts. Among the catalysts tested, 5Ga2O3/Ce0.6Zr0.4O2, which retained the largest acidity and basicity, showed the best catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide.  相似文献   

8.
Ce X Zr1−X O2 catalysts with different cerium content (X) (X=0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0) were prepared by a sol-gel method. Among these catalysts, Ce0.6Zr0.4O2 showed the best catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. To see the effect of acidity and basicity of transition metal oxide/Ce0.6Zr0.4O2 catalysts on the catalytic performance in the direct synthesis of dimethyl carbonate, MO/Ce0.6Zr0.4O2 (MO=Ga2O3, La2O3, Ni2O3, Fe2O3, Y2O3, Co3O4, and Al2O3) catalysts were prepared by an incipient wetness impregnation method. NH3-TPD and CO2-TPD experiments were carried out to measure acidity and basicity of the supported catalysts, respectively. Experimental results revealed that both acidity and basicity of the catalysts played a key role in determining the catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. The amount of dimethyl carbonate produced over MO/Ce0.6Zr0.4O2 catalysts increased with increasing both acidity and basicity of the catalysts. Among the catalysts tested, Ga2O3/Ce0.6Zr0.4O2, which had the largest acidity and basicity, exhibited the best catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide.  相似文献   

9.
Lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 [0.98NKN-0.02BZT] ceramics were fabricated by the conventional mixed oxide method with sintering temperature at 1,080°C to 1,120°C. The results indicate that the sintering temperature obviously influences the structural and electrical properties of the sample. For the 0.98NKN-0.02BZT ceramics sintered at 1,080°C to 1,120°C, the bulk density increased with increasing sintering temperature and showed a maximum value at a sintering temperature of 1,090°C. The dielectric constant, piezoelectric constant [d 33], electromechanical coupling coefficient [k p], and remnant polarization [P r] increased with increasing sintering temperature, which might be related to the increase in the relative density. However, the samples would be deteriorated when they are sintered above the optimum temperature. High piezoelectric properties of d 33 = 217 pC/N, k p = 41%, dielectric constant = 1,951, and ferroelectric properties of P r = 10.3 μC/cm2 were obtained for the 0.98NKN-0.02BZT ceramics sintered at 1,090°C for 4 h.  相似文献   

10.
The conditions for the formation of a spinel structure from a NiO–CuO–Fe2O3–Cr2O3 oxide mixture using several technological approaches have been examined. Addition of KCl is accompanied with the formation of two spinel-like phases, whereas in the absence of KCl just one solid solution of nickel–copper ferrite–chromite with the structure of a cubic spinel is formed. At the temperature of thermal treatment of 900°C, the presence of an admixture phase of the delafossite (CuCrO2) type was established. The conditions for the fabrication of samples containing two spinel phases (cubic and tetragonal) characterized with the most developed surface and manifesting = increased catalytic activity in the reaction of the decomposition of an organic substance by hydrogen peroxide have been formulated. The studied features of spinel synthesis can be of interest for developing materials with an active surface promising for application as adsorbents of catalysts and sensors.  相似文献   

11.
The processes of phase formation in the Nd2O3-TiO2-Na2CO3 system have been investigated in the temperature range 500–1100°C. The mechanism of the high-temperature solid-phase reaction of formation of the complex oxide Na2Nd2Ti3O10 has been studied. It has been established that the Na2Nd2Ti3O10 compound is formed from the intermediate product Na0.5Nd0.5TiO3 with a perovskite structure in the temperature range 830–890°C and from the NaNdTiO4 oxide with a perovskite-like layered structure in the temperature range 960–1100°C.  相似文献   

12.
CO impedes the low temperature (<170 °C) oxidation of C3H6 on supported Pt. Supported Au catalysts are very effective in the removal of CO by oxidation, although it has little propene oxidation activity under these conditions. Addition of Au/TiO2 to Pt/Al2O3 either as a physical mixture or as a pre-catalyst removes the CO and lowers the light-off temperature (T 50) for C3H6 oxidation compared with Pt catalyst alone by ~54 °C in a feed of 1% CO, 400 ppm C3H6, 14% O2, 2% H2O.  相似文献   

13.
We investigated the influence of the calcination temperature on the structural properties of Al2O3 and how the resultant Al2O3 support affects the characteristics of Pd/Al2O3 catalysts. Al2O3 pretreated at different calcination temperatures ranging from 500 °C to 1,150 °C, was used as catalyst supports. The Pd/Al2O3 catalysts were prepared by a deposition-precipitation method using a pH 7.5 precursor solution. Characterization of the prepared Pd/Al2O3 catalysts was performed by X-ray diffraction (XRD), N2-physisorption, CO2-temperature programmed desorption (TPD), CO-chemisorption, and field emission-transmission electron microscopic (FE-TEM) analyses. The CO-chemisorption results showed that the Pd catalyst with the Al2O3 support calcined at 900 °C, Pd/Al2O3 (900), had the highest and most uniformly dispersed Pd particles, with a Pd dispersion of 29.8%. The results suggest that the particle size and distribution of Pd are related to the phase transition of Al2O3 and the ratio of isolated tetrahedral to condensed octahedral coordination sites (i.e., functional groups), where the tetrahedral sites coordinate more favorably with Pd.  相似文献   

14.

Abstract  

Hydrogenolysis of glycerol to 1,3-propanediol in aqueous-phase was investigated over Pt-H4SiW12O40/SiO2 bi-functional catalysts with different H4SiW12O40 (HSiW) loading. Among them, Pt-15HSiW/SiO2 showed superior performance due to the good dispersion of Pt and appropriate acidity. It is found that Br?nsted acid sites facilitate to produce 1,3-PDO selectively confirmed by Py-IR. The effects of weight hourly space velocity, reaction temperature and hydrogen pressure were also examined. The optimized Pt-HSiW/SiO2 catalyst showed a 31.4% yield of 1,3-propanediol with glycerol conversion of 81.2% at 200 °C and 6 MPa.  相似文献   

15.
The catalytic properties of Ni/Al2O3 composites supported on ceramic cordierite honeycomb monoliths in oxidative methane reforming are reported. The prereduced catalyst has been tested in a flow reactor using reaction mixtures of the following compositions: in methane oxidation, 2–6% CH4, 2–9% O2, Ar; in carbon dioxide and oxidative carbon dioxide reforming of methane, 2–6% CH4, 6–12% CO2, and 0–4% O2, and Ar. Physicochemical studies include the monitoring of the formation and oxidation of carbon, the strength of the Ni-O bond, and the phase composition of the catalyst. The structured Ni-Al2O3 catalysts are much more productive in the carbon dioxide reforming of methane than conventional granular catalysts. The catalysts performance is made more stable by regulating the acid-base properties of their surface via the introduction of alkali metal (Na, K) oxides to retard the coking of the surface. Rare-earth metal oxides with a low redox potential (La2O3, CeO2) enhance the activity and stability of Ni-Al2O3/cordierite catalysts in the deep and partial oxidation and carbon dioxide reforming of methane. The carbon dioxide reforming of methane on the (NiO + La2O3 + Al2O3)/cordierite catalyst can be intensified by adding oxygen to the gas feed. This reduces the temperature necessary to reach a high methane conversion and does not exert any significant effect on the selectivity with respect to H2.  相似文献   

16.
In the present study, we synthesized biodiesel from soybean oil through a transesterification reaction catalyzed by lithium carbonate. Under the optimal reaction conditions of methanol/oil molar ratio 32:1, 12 % (wt/wt oil) catalyst amount, and a reaction temperature of 65 °C for 2 h, there was a 97.2 % conversion to biodiesel from soybean oil. The present study also evaluated the effects of methanol/oil ratio, catalyst amount, and reaction time on conversion. The catalytic activity of solid base catalysts was insensitive to exposure to air prior to use in the transesterification reaction. Results from ICP-OES exhibited non-significant leaching of the Li2CO3 active species into the reaction medium, and reusability of the catalyst was tested successfully in ten subsequent cycles. Free fatty acid in the feedstock for biodiesel production should not be higher than 0.12 % to afford a product that passes the EN biodiesel standard. Product quality, ester content, free glycerol, total glycerol, density, flash point, sulfur content, kinematic viscosity, copper corrosion, cetane number, iodine value, and acid value fulfilled ASTM and EN standards. Commercially available Li2CO3 is suitable for direct use in biodiesel production without further drying or thermal pretreatment, avoiding the usual solid catalyst need for activation at high temperature.  相似文献   

17.
In this study, spheroid LiNi1/3Co1/3Mn1/3O2 (NCM111) cathode material were synthesized using LiOH with Ni0.5Co0.2Mn0.3(OH)2 precursor by a simple solid-state reaction, and characterized by X-ray diffraction and scanning electron microscopy. Electrochemical behavior of NCM111 was investigated by electrochemical impedance spectroscopy (EIS) combining with cyclic voltammogram (CV) and charge/discharge test in the 1 M LiPF6-EC:EMC electrolyte with ethylene sulfate (DTD) and methylene methanedisulfonate (MMDS) additives either singly or in combination with high cutoff voltage of 3.0–4.5 V at room temperature of 25 °C or elevated temperature of 55 °C. It was found that DTD additive can increase the initial coulombic efficiency of NCM111, and the spheroid NCM111 can obtain the maximum initial discharge capacity of 177.81 mAh/g with the 2 wt% DTD, and keep 92.29% capacity retention after 80 cycles. The MMDS additives would decrease the initial discharge capacity of the NCM111, and enhance significantly long cycle life of the NCM111 with the capacity retention of 99.23% over 80 cycles at high voltage of 4.5 V. The additive combination 2 wt% DTD?+?1 wt% MMDS was an optimal additive combination, demonstrating the 102.2% capacity retention over 80 cycles at room temperature and the 94.2% capacity retention over 70 cycles at elevated temperature of 55 °C. EIS results revealed that the additive blend of 2 wt% DTD?+?1 wt% MMDS can drastically lower the kinetics impedance and suppress the growth rate of R ct for the NCM111 electrode.  相似文献   

18.
0.1 Fe/Ti mole ratio of Fe-TiO2 catalysts were synthesized via solvothermal method and calcined at various temperatures: 300, 400, and 500 °C. The calcined catalysts were characterized by XRD, N2-adsorption-desorption, UV-DRS, XRF, and Zeta potential and tested for photocatalytic degradation of alachlor under visible light. The calcined catalysts consisted only of anatase phase. The BET specific surface area decreased with the calcination temperatures. The doping Fe ion induced a red shift of absorption capacity from UV to the visible region. The Fe-TiO2 calcined at 400 °C showed the highest photocatalytic activity on degradation of alachlor with assistance of 30 mM H2O2 at pH 3 under visible light irradiation. The degradation fitted well with Langmuir-Hinshelwood model that gave adsorption coefficient and the reaction rate constant of 0.683 L mg−1 and 0.136 mg/L·min, respectively.  相似文献   

19.
Iron oxoborate Fe3O2(BO4) has been first produced in solid-phase chemical reactions. Its thermal behavior in the temperature range 20–900°C is studied with the use in-situ high-temperature powder X-ray diffraction. It is shown that Fe3O2(BO4) begins decomposing with the formation of Fe2O3 in the temperature range 660–900°C. Thermal expansion is sharply anisotropic at room temperature (αmaxmin = 7) and becomes more isotropic with an increase in the temperature (αmaxmin = 1.2). The degree of oxidation of Fe3+ has been confirmed by Mössbauer spectroscopy (at a room temperature), and two nonequivalent positions in the structure have been detected, which are occupied by iron atoms with the octahedral environment of the oxygen atoms.  相似文献   

20.
Straight In2O3 nanowires (NWs) with diameters of 50 nm and lengths ≥2 μm have been grown on Si(001) via the wet oxidation of In at 850°C using Au as a catalyst. These exhibited clear peaks in the X-ray diffraction corresponding to the body centred cubic crystal structure of In2O3 while the photoluminescence (PL) spectrum at 300 K consisted of two broad peaks, centred around 400 and 550 nm. The post-growth nitridation of In2O3 NWs was systematically investigated by varying the nitridation temperature between 500 and 900°C, flow of NH3 and nitridation times between 1 and 6 h. The NWs are eliminated above 600°C while long nitridation times at 500 and 600°C did not result into the efficient conversion of In2O3 to InN. We find that the nitridation of In2O3 is effective by using NH3 and H2 or a two-step temperature nitridation process using just NH3 and slower ramp rates. We discuss the nitridation mechanism and its effect on the PL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号