首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Production of MAG with CLA using Penicillium camembertii mono- and diacylglycerol lipase (referred to as lipase) was attempted for the purpose of expanding the application of CLA. The commercial product of CLA (referred to as FFA-CLA) is a FFA mixture containing almost equal amounts of 9cis,11trans (9c,11t)-CLA and 10t,12c-CLA. Esterification of FFA-CLA with glycerol without dehydration achieved 84% esterification but produced almost equal amounts of MAG and DAG. Esterification with dehydration not only achieved a high degree of esterification but also suppressed the formation of DAG. When a mixture of FFA-CLA/glycerol (1∶2, mol/mol), 1% water, and 200 units/g-mixture of P. camembertii lipase was agitated at 30°C for 72 h with dehydration at 5 mm Hg, the degree of esterification reached 95% and the contents of MAG and DAG were 90 and 6 wt%, respectively. This reaction system may be applied to the industrial production of MAG with unstable CLA.  相似文献   

2.
The present research deals with the chemical esterification of the sn-2- position of sn-1,3-diacylglycerol (sn-1,3-DAG) with 9cis,11trans (c9,t11) and 10trans,12cis (t10,c12) conjugated linoleic acid (CLA) isomers to obtain structured triacylglycerols (TAG); the sn-1,3-DAG substrates were produced from extra virgin olive oil by means of enzymatic reactions while CLA isomers were obtained using a three-step procedure based on alkaline hydrolysis of sunflower oil, urea purification of linoleic acid (LA) and alkaline isomerization of LA. The results showed good levels of CLA incorporation in structured TAG at the tested temperatures: 37.5% at 4 °C and 39.1% at 14 °C. To evaluate the incorporation of CLA isomers in sn-2- position of sn-1,3-DAG structural analysis of the newly synthesized TAG was carried out using an enzymatic and a chemical method. The results of the structural analysis also showed up the occurrence of acyl migration. The pancreatic lipase method allowed the direct determination of the fatty acid composition of TAG sn-2- position but this enzymatic method showed different results (p < 0.05) in respect to the chemical one; this occurrence could be due to an acylic specificity of the lipase. High incorporation of CLA isomers in sn-2- position of TAG was observed, 77.0% at 4 °C and 81.5% at 14 °C, considering the results of the chemical procedure.  相似文献   

3.
Commercially available preparations of CLA are composed of almost equal amounts of 9-cis,11-trans (9c,11t)-CLA and 10-trans,12-cis (10t,12c)-CLA. Each isomer was fractionated and enriched, for availability as a food supplement, by a process comprising selective esterification with l-menthol by Candida rugosa lipase, distillation, and n-hexane extraction. The first selective esterification of CLA isomers was conducted with an equimolar amount of l-menthol of 30°C. The oil phase of the reaction mixture was fractionated into an l-menthyl ester fraction (9c,11t-CLA rich) and an FFA fraction (10t,12c-CLA rich) by distillation. The FFA fraction was esterified again with an equimolar amount of l-menthol to enrich 10t,12c-CLA. The 10t,12c-CLA preparation was obtained as the resulting FFA fraction by distillation. 10t,12c-CLA was enriched to 91% with 40% recovery. To enrich 9c,11t-CLA, the l-menthyl ester fraction in the first esterification was chemically hydrolyzed, and the resulting FFA were esterified again with an equimolar amount of l-menthol. The 9c, 11t-CLA preparation was obtained by chemical hydrolysis of the resulting l-methyl ester fraction, followed by n-hexane extraction. 9c,11t-CLA was enriched to 94% with 42% recovery. This effective process for purification of CLA isomers using l-methol is applicable to the production of food supplements.  相似文献   

4.
A commercial product of CLA contains almost equal amounts of cis-9,trans-11 (c9,t11)-CLA and trans-10,cis-12 (t10,c12)-CLA. We attempted to enrich the two isomers by a two-step selective esterification using Candida rugosa lipase that acted on c9,t11-CLA more strongly than on t10,c12-CLA. An FFA mixture containing CLA isomers was esterified with an equimolar amount of lauryl alcohol in a mixture of 20% water and the lipase. When the esterification of total FA reached 50%, two isomers were fractionated in a good yield: t10,c12-CLA was enriched in FFA, and c9,t11-CLA was recovered in lauryl esters. The FFA were esterified again to enrich t10,c12-CLA. At 27.3% esterification of total FA, the t10,c12-CLA content in FFA increased to 64.8 wt% with 89.3% recovery: The ratio of the content of t10,c12-CLA to that of two isomers was 95.9%. Lauryl esters obtained by the single esterification were employed for enrichment of c9,t11-CLA. After the esters were hydrolyzed, the resulting FFA were esterified again with lauryl alcohol. At 62.0% esterification of total FA, the c9,t11-CLA content in lauryl esters increased to 73.3 wt% with 79.4% recovery: The ratio of the content of c9,t11-CLA to that of two isomers was 95.6%. In a 600-g-scale purification, molecular distillation was effective in separating the reaction mixture into lauryl alcohol, FFA, and lauryl ester fractions.  相似文献   

5.
The synthesis of structured triacylglycerols (TAG) by the enzymatic reaction between sn-1,3-diacylglycerols (sn-1,3-DAG) and conjugated linoleic acid (CLA) isomers was studied. Both the substrates of the reaction were produced from vegetable oils, the sn-1,3-DAG from extra virgin olive oil and the CLA isomers from sunflower oil. The enzymatic reactions between these substrates were catalyzed for 96 h by an immobilized lipase from Rhizomucor miehei (Lipozyme IM) and the reactions carried out in solvent were monitored every 24 h by using high-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD). The enzymatic reactions were carried out in different reaction media (hexane, isooctane and solvent free) and with different CLA/sn-1,3-DAG ratios. Total % acidic composition and structural analysis data were evaluated to verify the presence of CLA isomers in sn-2- position of synthesized TAG. The results showed good levels of CLA incorporation in sn-1,3-DAG, from 19.2% of TAG synthesized in solvent free conditions with a 0.5:1 substrate ratio, to 47.5% of TAG synthesized in isooctane with a 2:1 substrate ratio. It was observed that for all the reaction media, the best sn-2- acylic specificity was obtained with a 0.5:1 substrate ratio.  相似文献   

6.
Lai KL  Torres-Duarte AP  Vanderhoek JY 《Lipids》2005,40(11):1107-1116
Endothelial cell function can be influenced by nutrition, especially dietary FA and antioxidants. One class of dietary FA that is found in meat and dairy products derived from ruminant animals is conjugated linoleic acids (CLA). We have examined the effects of several CLA isomers on endothelial cell proliferation. 9t,11t-CLA was the only isomer that inhibited bovine arotic endothelial cell (BAEC) [3H]methylthymidine incorporation (I50=35 μM), and this antiproliferative effect was time-dependent. A small decrease (20%) in cell number was observed only at the highest concentration (60 μM) tested. The 9c,11t-, 9c,11c-, 10t 12c-, and 11c,13t-CLA isomers did not exhibit any antiproliferative effects over a 5–60 μM concentration range. α-Tocopherol and BHT decreased BAEC proliferation, but pretreatment of cells with either of these antioxidants substantially attenuated the antiproliferative effect of 9t,11t-CLA. No difference in lipid peroxidation, as measured by the thiobarbituric acid assay for malondialdehyde, was observed on treatment of endothelial cells with either 9t,11t- or 9c,11t-CLA. However, a 43% increase in caspase-3 activity was observed after incubating BAEC with 9t,11t-CLA, suggesting that the antiproliferative effect of this isomer is partially due to an apoptotic pathway. In contrast to the above results with normal endothelial cells, these five CLA isomers all inhibited proliferation of the human leukemic cell line THP-1, with the 9t,11t isomer again being the most (I50=60 μM) effective. These results confirm that different CLA isomers have different inhibitory potencies on the proliferation of normal and leukemic cells.  相似文献   

7.
Conjugated linoleic acid (CLA)‐enriched triacylglycerol (TAG) of 90 wt% was successfully synthesized in 10 h by direct esterification of glycerol and CLA using an immobilized lipase from Candida antarctica under vacuum. The best operating conditions for the synthesis of TAG were investigated according to the three parameters of temperature, enzyme loading, and vacuum. The synthesis of TAG increased with increasing temperature but it did not significantly change above 60°C (p>0.05). The increase of enzyme loading lead to an enhanced conversion of TAG, but enzyme loading of more than 10% (based on the total weight of the substrates) was not effective. Moreover, when vacuum increased, the conversion of TAG increased, but the conversion rate decreased when the vacuum level was too high. The best combination of temperature, enzyme loading, and vacuum level were 60°C, 10% of the total weight of the substrates, and 0.4 kPa, respectively. During the initial 6 h of reaction, Candida antarctica lipase had more selectivity for 10t,12c‐CLA than 9c,11t‐CLA onto the glycerol backbone, and a preference for the incorporation at the sn‐1,3 positions of glycerol rather than at the sn‐2 position.  相似文献   

8.
Isomeric CLA exhibit several significant biological activities in animals and humans and are easily isomerized to their corresponding t,t-CLA isomers during methylation with various acid-catalyzed reagents. To minimize such isomerization and provide a valid quantification of human plasma CLA content, several methylation methods were tested. Plasma neutral lipid, nonesterified FA (NEFA), and polar lipid classes were separated into the following fractions: (i) cholesteryl ester (CE, 1.2 mg/12 mL, 37.5% lipids), (ii) TAG (0.8 mg/12 mL, 25% lipids), (iii) NFFA (0.2 mg/12 mL, 6.2% lipids), (iv) MAG/DAG/cholesterol (0.3 mg/12 mL, 9.4% lipids), and (v) phospholipid (PL, 0.5 mg/20 mL, 15.6% lipids). Data showed that c9,t11-CLA found in TAG, MAG/DAG/cholesterol, and PL fractions were converted to methyl esters with sodium methoxide within 2 h at 55°C. However, the c9,t11-CLA in the CE fraction could not be completely converted to methyl esters by sodium methoxide/acetylchloride in methanol or methanolic KOH; instead, CE was treated with sodium methoxide and methyl acetate in diethyl ether for 1 h. NEFA were converted to methyl esters with trimethylsilyldiazomethane (TMSDAM). All reaction mixtures were monitored by TLC prior to GLC analysis. The highest enrichment of c9,t11-18∶2 (% FA) was in TAG (0.31%), followed by CE (0.14%) and PL (0.13%). The above methylation methods were then applied to a small subset (n=10) of nonfasting plasma lipid fractions to confirm the applicability of these data. Results from this subset of samples also indicated that the greatest enrichment of c9,t11-CLA was present in the TAG fraction (0.39%), followed by CE (0.27%) and PL (0.22%). These data indicate that different plasma fractions have different c9,t11-CLA contents.  相似文献   

9.
In this study, the quality characteristics, i.e., the acidity and acylglycerols, of currently produced Mallorcan oil was analyzed by titration and gas-chromatographic technique, respectively, in approximately 400 samples of monovarietal olive oil made from three genetic varieties (Arbequina, Empeltre, and Picual) on the island of Mallorca during the 2003/2004 and 2005/2006 seasons, and the differences in the compositions were discussed. Composition analysis showed that free fatty acids (FFAs) and DAGs were produced mainly by hydrolysis of triacylglycerols (TAGs). Fruit storage tests revealed that hydrolysis occurred during storage of olive fruits. The DAG content was higher in oil with higher acidity, but the maximal DAG content was only about 10 with 30% acidity, and the primary isomer found in Mallorcan oil was 1,3-DAG. However, the chiral-chromatographic study on the ratio of sn-1,2-DAG to the sum of sn-1,2-DAG and sn-2,3-DAG in a slightly hydrolyzed oil sample indicated that Empeltre and Picual fruits possess an sn-3-enantioselective lipase that leads to accumulation of sn-1,2-DAG. In currently produced Mallorcan oil, significant isomerization appears to occur and hydrolysis of the resulting 1,3-DAGs seems to lessen DAG accumulation.  相似文献   

10.
Stearidonic acid (SDA, 18:4 ω-3) content of modified soybean oil (MSO) containing?~25?% SDA, was increased by lipase-catalyzed hydrolysis. Four non-immobilized powdered lipases, Lipase AY 30 (Candida rugosa), Lipase G 50 (Penicillium camembertii), Lipomod? 34P-L034P (Candida cylindracea [rugosa]), Lipomod? 36P-L036P (Rhizopus oryzae), and an immobilized lipase, Lipozyme RM IM (Rhizomucor miehei) were assessed, at various incubation times, for their ability to hydrolyze MSO and specificity toward SDA. The SDA enriched products contained triacylglycerols (TAG), diacylglycerols (DAG) and monoacylglycerols (MAG). Lipase 34P-L034P exhibited specificity towards SDA, while Lipase AY was able to discriminate against it. The highest total SDA content (40.9?mol%) was obtained with Amano AY lipase at 4?h incubation (66.2?% hydrolysis). Unhydrolyzed TAG, 1,3-DAG, 2,3(1)-DAG, and MAG contained 37.7 (56.4 at the sn-2 position), 41.6, 51.5 (54.9 at the sn-2 position), and 49.9?% SDA, respectively. Amano AY lipase was also used to hydrolyze previously SDA-enriched TAG (48.7?% SDA) obtained from low temperature crystallization of MSO. The highest total SDA content (62.7?mol%) was obtained at 12?h incubation (85.9?% hydrolysis). The SDA contents of unhydrolyzed TAG, 1,3-DAG, 2,3(1)-DAG, and MAG were 58.7 (65.7 at the sn-2 position), 71.2, 70.2 (52.9 at the sn-2 position), and 59.4?%, respectively.  相似文献   

11.
Su ND  Liu XW  Kim MR  Jeong TS  Sok DE 《Lipids》2003,38(6):615-622
The effect of CLA on paraoxonase 1 (PON1), one of the antioxidant proteins associated with HDL, was investigated for its protective action against oxidative inactivation as well as its stabilization activity. When cis-9 (c9),trans-11 (t11)-CLA and t10,c12-CLA were examined for their protective activity against ascorbate/Cu2−-induced inactivation of PON1 in the presence of Ca2+, two CLA isomers exhibited a remarkable protection (E max, 71–74%) in a concentration-dependent manner (50% effective concentration, 3–4 μM), characterized by a saturation pattern. Such a protective action was also reproduced with oleic acid, but not linoleic acid. Rather, linoleic acid antagonized the protective action of CLA isomers in a noncompetitive fashion. Additionally, the two CLA isomers also protected PON1 from oxidative inactivation by H2O2 or cumene hydroperoxide. The concentration-dependent protective action of CLA against various oxidative inactivation systems suggests that the protective action of CLA isomers may be mediated through their selective binding to a specific binding site in a PON1 molecule. Separately, the inactivation of PON1 by p-hydroxymercuribenzoate (PHMB), a modifier of the cysteine residue, was also prevented by CLA isomers, suggesting the possible existence of the cysteine residue in the binding site of CLA. The c9,t11-CLA isomer seems to be somewhat more effective than t10,c12-CLA in protecting against the inactivation of PON1 by either peroxides or PHMB, in contrast to the similar efficacy of these two CLA isomers in preventing ascorbate/Cu2+-induced inactivation of PON1. Separately, CLA isomers successfully stabilized PON1, but not linoleic acid. These data suggest that the two CLA isomers may play a beneficial role in protecting PON1 from oxidative inactivation as well as in its stabilization.  相似文献   

12.
Synthesis of MAG of CLA with Penicillium camembertii lipase   总被引:1,自引:0,他引:1  
CLA has various physiological activities, and a FFA mixture containing almost equal amounts of cis-9,trans-11 and trans-10,cis-12 CLA (named FFA-CLA) has been commercialized. We attempted to produce MAG of CLA by a two-step successive reaction. The first step was esterification of FFA-CLA with glycerol. A mixture of FFA-CLA/glycerol (1∶5, mol/mol), 2 wt% water, and 200 units/g of Penicillium camembertii mono-and diacylglycerol lipase was agitated at 30°C to form a homogeneous emulsion. The esterification degree reached 84% after 10 h. To further increase the degree, the reaction was continued with dehydration at 5 mm Hg. The esterification degree reached 95% after 24 h (34 h in total), and the reaction mixture contained 50 wt% MAG and 44 wt% DAG. The second step was glycerolysis of the resulting DAG. The reaction mixture in the first-step esterification was transferred from the reactor to a beaker and was solidified by vigorous agitation on ice. When the solidified mixture was allowed to stand at 5°C for 15 d, glycerolysis of DAG proceeded successfully, and MAG content in the reaction mixture increased to 88.6 wt%. Hydrolysis of the acylglycerols was not observed during the second reaction. FA composition in the synthesized MAG was completely the same as that in the original FFA-CLA, showing that Penicillium lipase does not have selectivity toward FA in the FFA-CLA preparation.  相似文献   

13.
We explored whether CLA isomers and other C18 FA affect (i) lipid content and FA concentrations in total adipocyte lipids, (ii) FA synthesis from glucose in TAG and phospholipids of primary brown (BAT) and white adipocytes (WAT), and (iii) mRNA expression of uncoupling protein 1 (UCP1) in primary brown adipocytes of Djungarian hamsters (Phodopus sungorus). c9,t11-CLA, oleic, linoleic, and α-linolenic acid increased whereas t10,c12-CLA decreased lipid accumulation in both adipocyte types. t10,c12-CLA treatment affected FA composition mainly in BAT cells. CLA incorporation into lipids, in particular c9,t11-CLA, was higher in BAT. In both cell types, t10,c12-CLA treatment reduced the incorporation of glucose 13C carbon into FA of TAG and phospholipids, whereas c9,t11-CLA, linoleic, and α-linolenic acid either did not influence or dose-dependently increased glucose carbon incorporation into FA. UCP1 mRNA expression was inhibited by t10,c12-CLA but increased by c9,t11-CLA, linoleic, and α-linolenic acid. It is concluded that c9,t11-CLA and t10,c12-CLA have distinctly different effects on lipid metabolism in primary adipocytes. The effects of c9,t11-CLA are similar to those of other unsaturated C18 FA. The opposite effects of c9,t11-CLA and t10,c12-CLA are evident in both WAT and BAT cultures; however, brown adipocytes seem to be more susceptible to CLA treatment.  相似文献   

14.
Three commercially available immobilized lipases, Novozym 435 from Candida antarctica, Lipozyme IM from Rhizomucor miehei, and Lipase PS-C from Pseudomonas cepacia, were used as biocatalysts for the interesterification of conjugated linoleic acid (CLA) ethyl ester and tricaprylin. The reactions were carried out in hexane, and the products were analyzed by gas-liquid chromatography. The effects of molar ratio, enzyme load, incubation time, and temperature on CLA incorporation were investigated. Novozym 435, as compared to Lipozyme IM and Lipase PC-C, showed the highest degree of CLA incorporation into tricaprylin. By hydrolysis with pancreatic lipase, it was found that Lipozyme IM and Lipase PS-C exhibited high selectivity for the sn-1,3 position of the triacylglycerol early in the interesterification, with small extents of incorporation of CLA into the sn-2 position, probably due to acyl migration, at later reaction times. A small extent of sn-1,3 selectivity during interesterification by Novozym 435 was observed.  相似文献   

15.
The present research deals with the synthesis of structured triacylglycerols (TAG) by enzymatic treatment of sn-1,3-diacylglycerol (sn-1,3-DAG) with conjugated linoleic acid (CLA) isomers using the immobilized lipase from Rhizomucor miehei (Lipozyme® IM) under different experimental conditions. In particular, the influence of reaction parameters, such as temperature, enzymatic load, reaction time and DAG/CLA ratio has been evaluated using an experimental design software with a screening objective. Two responses have been selected, they are the percentage of CLA isomers in total TAG and in the sn-2- position and a three-level-4-factor fractional factorial experimental design was used to screen the variables. The results showed that the selected experimental variables have an influence on the enzymatic reaction, in particular, the DAG/CLA substrate ratio and the temperature, both of which inversely correlated with CLA incorporation, but also the enzymatic load and the reaction time, both directly correlated with CLA incorporation. The best results for CLA isomer % content both in total TAG (46.3%) and in the sn-2- position (52.2%) were obtained at 40 °C for 96 h, with 20% enzymatic load and a 0.5 reactive ratio.  相似文献   

16.
Free fatty acids from fish oil were prepared by saponification of menhaden oil. The resulting mixture of fatty acids contained ca. 15% eicosapentaenoic acid (EPA) and 10% docosahexaenoic acid (DHA), together with other saturated and monounsaturated fatty acids. Four commercial lipases (PS from Pseudomonas cepacia, G from Penicillium camemberti, L2 from Candida antarctica fraction B, and L9 from Mucor miehei) were tested for their ability to catalyze the esterification of glycerol with a mixture of free fatty acids derived from saponified menhaden oil, to which 20% (w/w) conjugated linoleic acid had been added. The mixtures were incubated at 40°C for 48h. The ultimate extent of the esterification reaction (60%) was similar for three of the four lipases studied. Lipase PS produced triacylglycerols at the fastest rate. Lipase G differed from the other three lipases in terms of effecting a much slower reaction rate. In addition, the rate of incorporation of omega-3 fatty acids when mediated by lipase G was slower than the rates of incorporation of other fatty acids present in the reaction mixture. With respect to fatty acid specificities, lipases PS and L9 showed appreciable discrimination against esterification of EPA and DHA, respectively, while lipase L2 exhibited similar activity for all fatty acids present in the reaction mixture. The positional distribution of the various fatty acids between the sn-1,3 and sn-2 positions on the glycerol backbone was also determined.  相似文献   

17.
The aim of this study was to selectively enrich t10,c12-conjugated linoleic acid (t10,c12-CLA) and c9,t11-CLA in commercial CLA mixtures using a combination of urea crystallization and lipase-catalyzed esterification. The objective of the urea fractionation is to remove saturated and monounsaturated fatty acids (FA) from the CLA mixtures. CLA-enriched free FA (FFA) mixtures containing 53.8 wt% t10,c12-CLA and 39.1 wt% c9,t11-CLA were produced from the CLA mixtures containing ~34 wt% each of the two CLA isomers by a urea crystallization using methanol and the urea-to-FA weight ratio of 2.5:1. The CLA-enriched FFA mixtures were partially esterified with dodecan-1-ol in a recirculating packed-bed reactor using an immobilized lipase from Candida rugosa to further enrich the t10,c12-CLA and c9,t11-CLA in an FFA fraction and an FA dodecyl ester fraction, respectively, under the optimal conditions, i.e., temperature, 20 °C; FA-to-dodecan-1-ol molar ratio, 1:1; water content, 2 wt% of total substrates; residence time, 5 min; and reaction time, 24 h (for t10,c12-CLA enrichment) and 12 h (for c9,t11-CLA enrichment). After the reaction, an FFA fraction with 72.6 wt% t10,c12-CLA was obtained. Another FFA fraction with 62.0 wt% c9,t11-CLA was recovered after the saponification of the FA dodecyl ester fraction. The yields of t10,c12-CLA and c9,t11-CLA in the FFA fractions were 43.6 and 21.5 wt%, respectively, based on their initial weights in the CLA mixtures.  相似文献   

18.
We have developed an efficient esterification for the synthesis of triacylglycerol (TAG) containing conjugated linoleic acids (CLA) using a blend of two powdered lipases. Two pairs of blended lipases promoted the esterification. Rhizomucor miehei lipase, plus Alcaligenes sp. lipase and Penicillium cammembertii MAG and DAG lipase plus Alcaligenes sp. lipase were used. At the optmal ratio of two lipases, the content of TAG containing CLA (TAG-CLA) in all glycerols reached 82–83% after 47 h using 1 wt% of lipases. With R. miehei lipase plus Alcaligenes sp. lipase, the reaction time to obtain ca. 60% of TAG-CLA was one-third of that needed with R. miehei lipase alone. The optimal ratio of two lipases differed between these two pairs. The optimal ratio was 70–80 wt% of R. miehei lipase in the last stage of the reaction, whereas it was over a wide range of 10–90 wt% for P. camembertii lipase. In the blend of R. miehei lipase plus Alcaligenes sp. lipase, activity remained very high after 10 cycles of esterification (every 47 h) and could be used in the industrial production of TAG-CLA.  相似文献   

19.
Ricinoleate, a monohydroxy fatty acid in castor oil, has many industrial uses. Dihydroxy and trihydroxy fatty acids can also be used in industry. We report here the identification of diacylglycerols (DAG) and triacylglycerols (TAG) containing trihydroxy fatty acids in castor oil. The C18 HPLC fractions of castor oil were used for mass spectrometry of the lithium adducts of acylglycerols to identify trihydroxy fatty acids and the acylglycerols containing trihydroxy fatty acids. Two DAG identified were triOH18:1–diOH18:1 and triOH18:0–OH18:1. Four TAG identified were triOH18:1–OH18:1–OH18:1, triOH18:0–OH18:1–OH18:1, triOH18:1–OH18:1–diOH18:1 and triOH18:0–OH18:1–diOH18:1. The structures of these two newly identified trihydroxy fatty acids were proposed as 11,12,13-trihydroxy-9-octadecenoic acid and 11,12,13-trihydroxyoctadecanoic acid. The locations of these trihydroxy fatty acids on the glycerol backbone were almost 100% at the sn-1,3 positions or at trace levels at the sn-2 position. The content of these acylglycerols containing trihydroxy fatty acids was at the level of about 1% or less in castor oil.  相似文献   

20.
Male weanling Wistar rats (n=15), weighing 200–220 g, were allocated for 6 wk to diets containing 1% (by weight) of conjugated linoleic acid (CLA), either as the 9c,11t-isomer, the 10t,12c-isomer, or as a mixture containing 45% of each of these isomers. The five rats of the control group received 1% of oleic acid instead. Selected enzyme activities were determined in different tissues after cellular subfractionation. None of the CLA-diet induced a hepatic peroxisome-proliferation response, as evidenced by a lack of change in the activity of some characteristic enzymes [i.e., acyl-CoA oxidase, CYP4A1, but also carnitine palmitoyltransferase-I (CPT-I)] or enzyme affected by peroxisome-proliferators (glutathione S-transferase). In addition to the liver, the activity of the rate-limiting β-oxidation enzyme in mitochondria, CPT-I, did not change either in skeletal muscle or in heart. Conversely, its activity increased more than 30% in the control value in epididymal adipose tissue of the animals fed the CLA-diets containing the 10t,12c-isomer. Conversely, the activity of phosphatidate phosphohydrolase, a rate-limiting enzyme in glycerolipid neosynthesis, remained unchanged in adipose tissue. Kinetic studies conducted on hepatic CPT-I and peroxisomal acyl-CoA oxidase with CoA derivatives predicted a different channeling of CLA isomers through the mitochondrial or the peroxisomal oxidation pathways. In conclusion, the 10t,12c-CLA isomer seems to be more efficiently utilized by the cells than its 9c,11t homolog, though the Wistar rat species appeared to be poorly responsive to CLA diets for the effects measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号