共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of ZrO2 and ZrO2-Y2O3 coatings from hydrous metal oxide sols on Nicalon NLM 202 silicon carbide fibers is investigated in detail. The results indicate that the microstructure of the oxide layer and the surface morphology of the coatings depend on the physicohemical properties of the sol. Kinetic studies of the oxidation of uncoated and coated fibers at different Y2O3 contents demonstrate that the oxidation rate of silicon carbide fibers decreases with increasing coating thickness. The effect of oxidation on the phase composition of Nicalon cloth samples coated with ZrO2 and ZrO2-Y2O3 is examined. 相似文献
2.
《Materials Letters》2006,60(17-18):2302-2305
ZrO2–Y2O3–Al2O3 nanocrystalline powders have been synthesized using chemical coprecipitation method. Nano-powders were compacted uniaxially and densified in a muffle furnace. Densification studies showed that a fully dense pellet of ZrO2(3Y) and a 99% relative density for 5 mol% Al2O3 doped ZrO2(3Y) were obtained after sintering at 1200 °C. The presence of Al2O3 inhibits grain growth and suppresses the densification process. Full densification and the maximum microhardness of 17.8 GPa were achieved for the ZrO2(3Y)/5 mol% Al2O3 composites sintered at 1250 °C. 相似文献
3.
对喷雾干燥和经不同温度热处理后的Al2O3纳米团聚体粉末的松装密度及振实密度进行了测试,通过扫描电镜观察分析了团聚体粉末颗粒的大小和形貌以及纳米晶颗粒的大小,采用X射线衍射分析了热处理后粉末的相组成.实验结果表明,在1050~1250℃热处理后的Al2O3纳米团聚体粉末颗粒仍近似球形,粒径在10~90μm之间.随着热处理温度升高,纳米团聚体大颗粒表面发生塌陷,大颗粒之间发生连接,大颗粒内部纳米颗粒明显长大.低于1250℃热处理后的粉末流动性好,振实密度高,适于等离子体喷涂制备纳米结构涂层. 相似文献
4.
采用Gleeble-1500热模拟试验机和透射电子显微镜研究了变形温度为300~900℃,应变速率为0.01~10s-1条件下Al_2O_3/Cu复合材料的高温流变行为和组织演变规律,并利用Arrhenius关系和Zener-Hollomn参数构建了合金的峰值屈服应力、变形温度和应变速率三者之间的本构方程。结果表明:Al_2O_3/Cu复合材料的流变应力-应变曲线为典型的动态再结晶类型,其曲线由加工硬化、动态软化和稳定流变3个阶段组成,当变形温度一定时,流变应力随应变速率的增大而增大,而当应变速率固定时,流变应力随变形温度的升高而减小;求解得到复合材料的结构因子lnA为15.2391,应力水平参数a为0.020788mm~2/N,应力指数n为5.933035,变形激活能Q为2.1697×10~5kJ/mol;随着变形温度的升高,基体内位错密度逐渐下降,并呈现出明显的再结晶特征,而当固定变形温度时,随着应变速率的增大,基体内位错密度呈先增大后下降趋势。基于微观组织演变和热加工图,Al_2O_3/Cu复合材料的最佳热加工参数范围为热加工温度500~850℃、应变速率低于0.1s-1。 相似文献
5.
T. Chartier J. M. Laurent D. S. Smith F. Valdivieso P. Goeuriot F. Thevenot 《Journal of Materials Science》2001,36(15):3793-3800
Because of its excellent thermal, mechanical and electrical properties silicon carbide is widely used for heating elements. Nevertheless these elements are affected by electrical ageing (increase of electrical resistivity during use). This phenomenon is generally attributed to oxidation but no satisfactory answer has been presently found to reduce its effects. The aim of this study is to obtain a better understanding of the degradation of the electrical properties through the oxidation behavior of hot pressed samples containing various amount of additives. Eight dense SiC ceramic samples with Al2O3, AlN, Y2O3and NiO additives were prepared by hot pressing. The influence of these additives on sintering, oxidation behavior and electrical properties was evaluated. Formation of an yttrium garnet phase leads to liquid phase sintering but decreases the oxidation resistance. The dependence of electrical resistivity with temperature can be explained by the presence or not of a metallic phase formed between Ni and Si. This secondary phase permits a low (< 5 · cm) and almost constant value of the electrical resistivity from ambient temperature up to 950°C to be obtained. 相似文献
6.
《Vacuum》2010,84(12):1475-1480
In order to clarify the effect of Al2O3 particle size on the arc erosion behavior of the ceramic-reinforced Al2O3/Cu composite, Al2O3/Cu composites with different sizes of Al2O3 particles were prepared by powder metallurgy, the effect of Al2O3 particle size on the characteristics of arc motion was studied, and the mechanism of arc erosion of Al2O3/Cu composites was discussed as well. The results show that with decrease in the size of Al2O3 particles, the erosion area increases significantly and the erosion pits become shallower. The vacuum breakdown is preferred to appear in the area between Al2O3 particle and the copper matrix. Based on the experimental results and theoretical analysis, a particle partition arc model is proposed. 相似文献
7.
8.
High-strain-rate superplastic deformation behavior of a powder metallurgy-processed 2124 Al alloy 总被引:1,自引:0,他引:1
High-strain-rate superplastic behavior of a powder-metallurgy processed 2124 alloy prepared through extrusion at a high ratio of 70 : 1 was investigated. A maximum tensile elongation of 700% was obtained at 823 K and at a strain rate of 10–2 s–1. Deformation behavior of this alloy was similar to those reported for other many HSR superplastic materials. Incorporation of threshold stress into the constitutive equation reveals that the true stress exponent is 2 and true activation energy for plastic flow is comparable to that for lattice diffusion in pure aluminum. Comparison of the present alloy with the 2124 Al composite indicates that the composite is weaker than the unreinforced alloy in the temperature range where grain boundary sliding is rate-controlled. 相似文献
9.
10.
11.
M. Mitomo 《Journal of Materials Science》1977,12(2):273-276
The effect of Fe and AI on the nitridation of Si was investigated under controlled O2 partial pressures in the range 1.2×10–12 to 1.2×10–15 atm at 1420° C. The volatilization of Si during nitridation is attributed to SiO gas formation. Addition of Fe promoted the nitridation to phase at lower temperatures than the melting point of Si, whereas addition of Al increased the amount of phase. The stabilization of the structure is explained by Al2O3 formation and the dissolution of it in Si3N4 to form (Si, AL)3 (N, O)4 (sialon). 相似文献
12.
13.
14.
M. Kobayashi T. Meguro K. Komeya T. Yokoyama J. Funahashi T. Kameda 《Journal of Materials Science》2000,35(16):4129-4136
The effect of TiO2 content on the oxidation of sintered bodies from the conventional Si3N4-Y2O3-Al2O3-AlN system was investigated. Sintered specimens composed of Si3N4, Y2O3, Al2O3, and AlN, with a ratio of 100 : 5 : 3 : 3 wt% and containing TiO2 in the range of 0 to 5 wt% to Si3N4, were fabricated at 1775 °C for 4 h at 0.5 MPa of N2. Oxidation at 1200 to 1400 °C for a maximum of 100 h was performed in atmospheres of dry and wet air flows. The relation between weight gain and oxidation time was confirmed to obey the parabolic law. The activation energies decreased with TiO2 content. In the phases present in the specimens oxidized at 1300 °C for 100 h in dry air, Y3Al5O12 and TiN, which had existed before oxidation, disappeared. Alpha-cristobalite and Y2O3·2TiO2 (Y2T) appeared in their place and increased with increasing TiO2 content. In those oxidized at 1400 °C, -cristobalite was dominant and very small amounts of Y2O3·2SiO2 and Y2T were contained. There was a tendency for more -cristobalite to form in oxidation in wet air than in dry air. Therefore, moisture was confirmed to affect the crystallization of SiO2 formed during oxidation. Judging from the lower activation energy, the crystallization, and the pores formation, we concluded that the addition of TiO2 decreases oxidation resistance. 相似文献
15.
Dense SiC ceramics with plate-like grains were obtained by pressureless sintering using -SiC powder with the addition of 6 wt% Al2O3 and 4 wt% Y2O3. The relationships between sintering conditions, microstructural development, and mechanical properties for the obtained ceramics were established. During sintering of the -SiC powder compact the equiaxed grain structure gradually changed into the plate-like grain structure that is closely entangled and linked together through the grain growth associated with the phase transformation. With increasing holding time, the fraction of phase transformation, the grain size, and the aspect ratio of grains, increased. Fracture toughness increased from 4.5 MPa m1/2 to 8.3 MPa m1/2 with increasing size and aspect ratio of the grains. Crack deflection and crack bridging were considered to be the main operative mechanisms that led to improved fracture toughness. 相似文献
16.
《Advanced Powder Technology》2022,33(7):103639
High energy mechanical milling was used to fabricate nanoparticulate Si using Al2O3 grinding media. Two ratios of grinding media to charge of 5 and 10 were used with milling times, such as 7, 10, 13, 16, and 19 h. Morphology of the milled powders was investigated by scanning and transmission electron microscopy. Crystallinity of the milled powders was found to be preserved for all milling conditions without amorphization. Crystallite size of the milled powders was calculated from x-ray diffractograms by various methods. From morphology and crystallite size it was observed that 13 h of milling is the optimum time to produce well dispersed Si nanoparticulates. Further increase in milling duration clearly indicated agglomeration of the powders and cold welding of the crystallites for samples of both media-to-charge ratios. X-ray diffractograms and Raman spectrographs of the milled samples were used to calculate the strain induced in the materials, which indicated progressive increase in strain with milling duration. The results indicate that Al2O3 milling media can be used with optimized process conditions for the production of large quantities of nanoparticulate Si. 相似文献
17.
Si3N4-ZrO2 composites have been prepared by hot isostatic pressing at 1550 and 1750 °C, using both unstabilized ZrO2 and ZrO2 stabilized with 3 mol% Y2O3. The composites were formed with a zirconia addition of 0, 5, 10, 15 and 20 wt%, with respect to the silicon nitride, together with 0–4 wt% Al2O3 and 0–6 wt% Y2O3. Composites prepared at 1550 °C contained substantial amounts of unreacted -Si3N4, and full density was achieved only when 1 wt% Al2O3 or 4 wt % Y2O3 had been added. These materials were generally harder and more brittle than those densified at the higher temperature. When the ZrO2 starting powder was stabilized by Y2O3, fully dense Si3N4-ZrO2 composites could be prepared at 1750 °C even without other oxide additives. Densification at 1750 °C resulted in the highest fracture toughness values. Several groups of materials densified at 1750 °C showed a good combination of Vickers hardness (HV10) and indentation fracture toughness; around 1450 kg mm–2 and 4.5 MPam1/2, respectively. Examples of such materials were either Si3N4 formed with an addition of 2–6 wt% Y2O3 or Si3N4-ZrO2 composites with a simultaneous addition of 2–6 wt%Y2O3 and 2–4 wt% Al2O3. 相似文献
18.
通过在水介质中添加纳米氧化铝粒子,研制了一种新型传热冷却工质-氧化铝-水纳米流体,给出的纳米流体沉降照片和粒径分布显示了加入分散剂的悬浮液具有较高的分散性、稳定性.同时还测定了纳米Al2O3-水悬浮液的zeta电位和吸光度,探讨了不同pH值和SDBS分散剂加入量对纳米氧化铝粉体在水相体系分散稳定性的影响。结果表明:zeta电位的绝对值与吸光度有良好的对应关系,zeta电位绝对值越高,吸光度越大,粉体体系的分散性能越好;pH值约在8.0时,溶液的zeta电位绝对值较高,吸光度较大,说明此时有较好的分散效果.SDBS能显著提高水溶液中舢203表面zeta电位绝对值,增大了颗粒间静电排斥力,改善了悬浮液稳定性。在0.1%纳米Al2O3-水悬浮液中,SDBS分散剂最佳加入量(质量分数)为0.10%时,能得到分散稳定的悬浮液体系。 相似文献
19.
20.
A highly refractory glass in the system Al2O3-SiO2-P2O5-Y2O3 has been designed and produced such that, upon heating, an essentially fully crystalline glass—ceramic evolves containing mullite (nominally 3Al2O3·2SiO2) and xenotime (YPO4) as the final principal phases. Phase separation in this glass occurred during cooling from the melt and continued during annealing. XPS of the Al 2p, P 2p and the Y 3d electrons revealed that the average chemical environment of each of these elements is measurably different in the annealed glass and in the completely crystallized material. This indicates that the compositions of the separated glass phases are very different from those of the crystal phases which form from them. Additional rearrangement of the glass structure was observed at 1173 K. Extensive formation of mullite was initially detected at 1223 K and was followed by the crystallization of xenotime and the transient compounds of Y4Al2O9, Y2Si2O7, AlPO4 and YP5O14. The optimum crystal nucleation and crystallization temperatures of 1173 and 1473 K, respectively, were determined from DTA, XRD, SEM and TEM studies. 相似文献