共查询到11条相似文献,搜索用时 15 毫秒
1.
Microstructure evolution and precipitation behavior of low carbon steel hot strips produced by CSP 总被引:1,自引:0,他引:1
The microstructures of low carbon steel before, during and after rolling deformation of each stand were observed using optical microscope. The result showed that the microstructures were very fine after six passes rolling deformation. The effect of the first stand reduction on microstructure refinement was very distinct. During the rolling process, with the increase of the accumulated strain, the microstructures would further refine, and the density of dislocation would increase at the same time. In continuous casting thin slabs and each finishing stand, lots of observed precipitates were mainly A12O3 and MnS along the grain boundaries or in grains,which played an important role in the mechanical properties of the hot strips of low carbon steel produced by CSP (compact strip production) technology. 相似文献
2.
The solidification structure, microstructure evolution during rolling and precipitates with nanometers in dimension of the low carbon steels produced by CSP process with thin slabs have been studied in recent years. Important differences in microstructure and mechanical properties between the CSP products and the conventional one were observed. These differences may arise from the much rapider solidification rate and cooling rate after casting of the thin slabs. Some aspects of the microstructure for the low carbon steels of the CSP thin slabs are summarized and compared with the conventional one. 相似文献
3.
XiangdongHuo DeluLiu YuanliWang NanjingChen YonglinKang JieFu 《北京科技大学学报(英文版)》2004,11(2):133-137
In comparison with conventional production for hot strips, compact strip production (CSP) brings about some new micro-structural phenomena. Investigations were carried out to clarify the grain refinement mechanism of low carbon steel strips produced by the EAF-CSP process. Samples, obtained from the same rolling stock during continuous rolling, were examined through SEM,TEM and XEDS. Thin slabs have a dominant columnar structure and the spacing of the secondary dendrite arms ranges from 90 to ~125 μm. The average grain sizes for the central area of the samples from the 1st to 6th pass are 41.6, 25.2, 21.4, 20.2, 13.1, 6.7 μm,respectively. Large number of nanometer oxide and sulfide have been found in the low carbon steel produced by the CSP process.The grain refinement mechanism can be summarized as follows: finer solidification structure of the thin slab; austenite recrystalliza-tion at higher temperature and stain accumulation at lower temperature caused by the great reduction of single rolling pass during continuous rolling; nano-scaled precipitates of sulfide and oxide which drag grain boundaries of austenite or ferrite to prevent the grain coarsening. 相似文献
4.
Transmission electron microscopy (TEM) and physics-chemical phase analysis were employed to investigate the precipitates in high strength steels microalloyed with Ti produced by compact strip production (CSP). It was seen that precipitates in Ti microalloyed steels mainly included TiN, Ti4C2S2, and TiC. The size of TiN particles varied from 50 to 500 nm, and they could precipitate during or before soaking. The Ti4C2S2 with the size of 40-100 nm might precipitate before rolling, and the TiC particles with the size of 5-50 nm precipitated heterogeneously. High Ti content would lead to the presence of bigger TiC particles that precipitated in austenite, and by contrast, TiC particles that precipitated in ferrite and the transformation of austenite to ferrite was smaller. They were less than 30 nm and mainly responsible for precipitate strengthening. It should be noted that the TiC particles in higher Ti content were generally smaller than those in the steel with a lower Ti content. 相似文献
5.
The effect of boron on hot strips of low carbon steel produced by compact strip production (CSP) to reduce the strength to a certain degree was investigated, which is quite different from that of high-strength low alloy steel. The mechanical properties and microstructural evolution of the hot strip were studied using optical microscopy and tensile tests. By means of an electrolytic dissolution technique and Thermo-Cal calculation, the precipitates containing boron were analyzed and detected. From the electron back-scattered diffraction analysis, it can be deciphered whether the microstructure has recrystallized or not. Furthermore, the effect of boron segregation on the recrystallization or non-recrystallization conditions can be distinguished. The segregation behavior of boron was investigated in boron-containing steel. The nonequilibrium segregation of boron during processing was discussed on the basis of the forming complexes with vacancies that migrate to the boundaries prior to annihilation, which was confirmed by the sub-sequent cold rolling with annealing experiments. 相似文献
6.
Quantitative analysis on strengthening mechanism of ultra-thin hot strip of low carbon steel produced by CSP technique 总被引:3,自引:0,他引:3
HaoYu YonglinKang XueyingXiong KeluWang JieFu GuijiangChen LiejunLi 《北京科技大学学报(英文版)》2004,11(5):425-427
Based on experimental data of positron annihilation technology, electrolytic dissolution technique, electron back-scattered pattern, etc. and by analysis the strengthening factors, the strengthening mechanism of ultra-thin hot strip of low carbon steel produced by CSP (Compact Strip Production) technique was investigated. The value of each strengthening mechanism and its contribution percentage to yield strength were achieved. The results show that refinement strengthening is the predominant strengthening mode; precipitation strengthening and dislocation strengthening are second to it, their contributions to yield strength are almost equal. 相似文献
7.
Huajie Wu Yangchun Liu Jie Fu 《北京科技大学学报(英文版)》2007,14(4):312-316
On the basis of the effect of carbon precipitation on the microstructure and properties of steel products below At temperature, a new thermal treatment method (temper-rapid cooling process) was studied. By the temper-rapid cooling process, the yield strengths of the high strength low carbon (HSLC) steel ZJ330 and SPA-H produced using the compact strip production (CSP) process increased from 340 to about 410 MPa and from 410 to about 450 MPa, respectively. The results indirectly indicated that there existed nanoscaled iron-carbon precipitates that have obvious precipitation effect on low carbon steel produced by CSP. The prospect of application is discussed. 相似文献
8.
为减少采用CSP工艺生产的Q235B热轧带钢边部裂纹缺陷,分别在Q235 B连铸坯和热轧带钢裂纹处进行取样,通过宏观形貌、金相组织、扫描电镜及能谱分析等方法,研究铸坯角部横裂纹与热轧带钢边部裂纹的演变规律和形态变化. 结果表明,结晶器卷渣、冷却不均匀是产生连铸坯角部裂纹的主要原因;第2道次过渡带钢的金相组织中出现混晶现象,裂纹边上存在脱碳现象;热轧带钢边部裂纹主要源自于铸坯裂纹,并在轧制过程中得到扩展. 根据连铸工艺参数,对边部裂纹缺陷率与液渣层厚度、保护渣消耗量、结晶器振动参数、中间包过热度、结晶器传热参数以及铸坯宽度的关系进行统计分析,并提出相应的边部裂纹控制工艺措施. 相似文献
9.
The availability using oxygen-rich powders to prepare ultrafine Ti(C,N)-based cermets was investigated. The deoxidation process,
denitrification phenomenon and the effect of deoxidation on microstructure and mechanical properties of sintered samples were
discussed, respectively. The results show that oxygen in the samples prepared even with high oxygen contained in starting
powders can be almost completely cleaned away through suitable sintering process. The ultrafine oxygen-rich powders have a
significant effect on microstructure, which promotes the formation of white core phase. A ultrafine Ti(C,N)-based cermet with
mean particle size of 0.30 μm, uniform microstructure and excellent mechanical properties is successfully prepared. It is
also found that there exists severe denitrification phenomenon in the preparation process of ultrafine Ti(C,N)-based cermet.
Foundation item: Project(50323008) supported by the National Natural Science Foundation of China 相似文献
10.
WC和Mo2C添加对Ti(C,N)基金属陶瓷切削性能的影响 总被引:1,自引:0,他引:1
传统的Ti(C,N)基金属陶瓷刀具材料广泛采用Mo2C来改善粘结相对硬质相的润湿性,近年来Mo的价格不断上涨,寻找低成本金属代替Mo已成为Ti(C,NEDS)基金属陶瓷的发展趋势。为了探讨WC代Mo2C添加的可行性及其效果,研究了WC和Mo2C添加对Ti(C,N)基金属陶瓷切削性能的影响,采用电子扫描显微镜(SEM)观察刀具的磨损形貌,通过能谱分析(EDS)分析磨损表面的元素分布,并对刀具的主要磨损机理进行分析。实验结果表明,添加WC的金属陶瓷的切削长度和添加Mo2C的相当,将原始WC粉末粒度细化后,不仅切削长度显著增加,切屑也由带状缠乱型变为螺旋型,并且大大减少积屑瘤的形成,有利于切削的进行。切削磨损机理主要为扩散磨损和氧化磨损,伴有轻微的磨粒磨损。 相似文献
11.
球磨是金属陶瓷制备中的关键工艺,滚动球磨是目前成本较低、在实际工业生产中应用最广泛的球磨方式。为了量化分析球磨时间对Ti(C0.7,N0.3)基金属陶瓷的影响,采用湿混的方法在固定的球料比、球磨机转速和球磨介质添加量的条件下,研究球磨时间因素对Ti(C0.7,N0.3)的晶粒尺寸、应变和晶格常数的影响,以及对烧结后的Ti(C0.7,N0.3)基金属陶瓷微观组织和物理力学性能如收缩率、密度、硬度和横向断裂强度的影响。结果表明,随球磨时间增加,Ti(C0.7,N0.3)晶粒尺寸下降,而微观应变增加。同时,Ti(C0.7,N0.3)的晶格常数也增加,这与晶粒微观应变增加以及少量原料的氧化加剧有关。对烧结后的微观组织而言,球磨时间的增加导致金属陶瓷硬质相平均晶粒尺寸下降,但是当球磨时间达到72和96 h的时候,金属陶瓷中出现了0.1 μm左右的孔隙,这与球磨过程中氧含量的增加导致烧结时脱气反应以及Ti(C,N)硬质相和Ni粘接剂之间的润湿性变差有关。Ti(C0.7,N0.3)基金属陶瓷微观组织中白芯结构数量随球磨时间的增加明显减少了,芯中Mo含量的下降而Ti含量的增加是白芯数量下降的原因。环形相随球磨时间的增加变薄了,这一现象与不同尺寸的颗粒溶解度以及颗粒的均匀性有关。另外,随着球磨时间的增加,Ti(C0.7,N0.3)基金属陶瓷的硬度增加,而横向断裂强度随球磨时间的增加先增加后下降,其中孔隙对横向断裂强度的损害作用要大于晶粒细化对强度提高的作用。 相似文献