首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper describes the design of a high-performance sensorless permanent magnet synchronous motor (PMSM) drive, capable of starting at full torque even from standstill and able to deliver full torque in 1:12 speed range. Experimental setup, hardware circuitry and software implementation are described into details. Particular emphasis is given to the software control algorithms, that were specifically studied to enhance the overall system performance  相似文献   

2.
In this paper, a new approach to sensorless speed control and initial rotor position estimation for interior permanent magnet synchronous motor (IPMSM) drive is presented. In rotating condition, speed and rotor position estimation of IPMSM drive are obtained through an extended Kalman filter (EKF) algorithm simply by measurement of the stator line voltages and currents. The main difficulty in developing an EKF for IPMSM is the complexity of the dynamic model expressed in the stationary coordinate system. This model is more complex than that of the surface PMSM, because of the asymmetry of the magnetic circuit. The starting procedure is a problem under sensorless drives, because no information is available before starting. The initial rotor position is estimated by a suitable sequence of voltage pulses intermittently applied to the stator windings at standstill and the measurement of the peak current values of the current leads to the rotor position. Magnetic saturation effect on the saliency is used to distinguish the north magnetic pole from the south. To illustrate our work, we present experimental results for an IPMSM obtained on a floating point digital signal processor (DSP) TMS320C31/40 MHz based control system.  相似文献   

3.
A new sensorless drive based on a decoupling control and an adaptive full-order observer is developed. A modified decoupling control is introduced and integrated with the adaptive observer to reduce the complexity of the whole system. The speed estimation based on adaptive control theory is analyzed and the necessary and sufficient conditions for stability of the speed estimation are analytically derived. It is indicated that the system can be unstable in the low-speed region with regenerative loads. However, assigning an appropriate feedback gain to the adaptive observer can restore the stability and reduce the unstable region. Sensitivity of the sensorless drive against parameter and measurement errors is also qualitatively discussed. Simulation and experimental results are then given to verify the validity of the theoretical results  相似文献   

4.
This letter deals with rotor position and speed estimation of permanent magnet AC drives. Two reduced-order observers, a linear (AO) and a nonlinear one (NLO), are compared, an adaptive speed estimation scheme is also considered, analysis and simulations show that the NLO has better performance and demands less computational load than the AO plus the adaptive scheme  相似文献   

5.
Temperature- and frequency-dependent variations of the rotor (R'r) and stator (Rs) resistances pose a challenge in the accurate estimation of flux and velocity in the sensorless control of induction motors (IMs) over a wide speed range. Solutions have been sought to the problem by signal injection and/or by the use of different algorithms for the different parameters and states of the same motor. In this paper, a novel Extended-Kalman-Filter (EKF)-based estimation technique is developed for the solution of the problem based on the consecutive operation of two EKF algorithms at every time step. The proposed ldquobraidedrdquo EKF technique is experimentally tested under challenging parameter and load variations in a wide speed range, including low speed. The results demonstrate a significantly increased accuracy in the estimation of Rs and R'r, as well as load torque, flux, and velocity in transient and steady state, when compared with single EKFs or other approaches taken to estimate these parameters and states in the sensorless control of IMs. The improved results also motivate the utilization of the new estimation approach in combination with a variety of control methods which depend on accurate knowledge of a high number of parameters and states.  相似文献   

6.
This paper describes a novel angle estimation scheme for a real time digital signal processor (DSP) based switched reluctance motor drive using fuzzy logic where several unique techniques are implemented to improve the estimation accuracy. First, an optimized fuzzy model of the motor was created using an adaptive neuro-fuzzy inference system (ANFIS) based on accurately measured flux linkage data. Secondly, an improved fuzzy optimal sensing phase selector was developed based on the analysis of both modeling error and measurement error. Lastly, a delayless polynomial predictive filter and an online phase winding resistance estimator are also implemented to further improve the position estimation accuracy. Both simulation and experiment results on a DSP based real time drive are presented to show the effectiveness of this scheme.  相似文献   

7.
This paper describes a new algorithm for the estimation of rotor position in a switched reluctance motor. It is based on a recursive least-squares estimator deducing both position and speed. A particular advantage of the algorithm is its ability to extract information about rotor position at very low speeds (one electrical cycle per minute) from voltage and current waveforms sampled only at the converter switching frequency. Experimental results for a 12/8 motor demonstrate that estimation is possible over the full range of operating conditions, including the field-weakening region, with a typical accuracy of better than two mechanical degrees. The paper also illustrates the performance of the algorithm by showing it operating within a sensorless position controller  相似文献   

8.
研究了一种基于模型参考自适应无速度传感器的永磁同步电机直接转矩控制系统:将永磁同步电机的磁链模型作为参考模型,估算的定子磁链模型作为可调模型,设计了自适应定律对电机的转速与定子电阻同时进行跟踪辨识,使用空间电压矢量调制技术组成了永磁同步电机无速度传感器直接转矩控制系统。仿真实验结果表明该系统获得了近似圆形的定子磁链,在转速与转矩变化时均能准确的估算出电机转速,具有良好的动、静态性能。  相似文献   

9.
A general algorithm for speed and position estimation of AC motors   总被引:3,自引:0,他引:3  
A computationally efficient speed and position estimation algorithm, generally applicable to AC motor drives, is designed and analyzed. Applications include: (a) sensorless permanent-magnet and reluctance synchronous motor drives using the fundamental excitation as information source; (b) sensorless drives using saliency and signal injection; and (c) sensored drives using resolvers. Particular attention is given for case (a). Low parameter sensitivity in the entire speed range (except at low speeds for the reluctance motor)-implying a small position estimation error-and good dynamic properties at nominal speeds are verified  相似文献   

10.
Experimental fault-tolerant control of a PMSM drive   总被引:1,自引:0,他引:1  
The paper describes a study and an experimental verification of remedial strategies against failures occurring in the inverter power devices of a permanent-magnet synchronous motor drive. The basic idea of this design consists of incorporating a fourth inverter pole, with the same topology and capabilities of the other conventional three poles. This minimal redundant hardware, appropriately connected and controlled, allows the drive to face a variety of power device fault conditions while maintaining a smooth torque production. The achieved results also show the industrial feasibility of the proposed fault-tolerant control, that could fit many practical applications  相似文献   

11.
Sensorless Control of Salient PMSM Drives in the Transition Region   总被引:2,自引:0,他引:2  
This paper considers speed and position estimation of salient permanent-magnet synchronous machines (PMSMs). An estimator of phase-locked loop (PLL) type is considered. Signal injection techniques are used in the zero-speed and low-speed regions, while information found in the back electromotive force (EMF) is used for higher speeds. Particular focus is put on the transition region, i.e., the speed region where the estimator switches between signal-injection and back-EMF-based methods. It is shown that the estimator may become unstable for certain setups of machine parameters and operating conditions if the transition region is determined incorrectly. To avoid this instability, design rules for how the transition region should be determined, as well as recommended selections for all parameters introduced, are given. The results of the analysis are also supported with experimental results.  相似文献   

12.
Concepts for the sensorless position control of induction motor drives rely on anisotropic properties of the machine rotor. Such anisotropies can be incorporated as periodic variations of magnetic saliencies in various ways. The built-in spatial anisotropy is detected by injecting a high-frequency flux wave into the stator. The resulting stator current harmonics contain frequency components that depend on the rotor position. Models of the rotor saliency serve to extract the rotor position signal using phase-locked loop techniques. A different approach makes use of the parasitic effects that originate from the discrete winding structure of a cage rotor. It has the merit of providing high spatial resolution for incremental positioning without sensor. The practical implementation of sensorless position identification and of a high-accuracy position control system are reported  相似文献   

13.
介绍了一种基于扩展卡尔曼滤波的永磁同步电机无传感器转子位置与速度估算方法,并以此为基础实现了永磁同步电机的无传感器矢量控制系统。通过测量流过电机定子电流和电机端电压在线估计电机转子的位置和速度,实现永磁同步电机的无传感器控制策略。仿真和实验结果验证了该方案的可行性及有效性。  相似文献   

14.
姚莹  李伟  金海  郭婕 《电子科技》2009,33(10):45-50
针对基于低分辨率霍尔位置传感器的永磁同步电机系统在中高速时出现的估算精度低与响应速度慢等问题,在建立永磁同步电机数学模型的基础上,将龙贝格观测器与锁相环结构相结合,提出一种永磁同步电机无位置传感器控制算法。利用MATLAB/Simulink工具搭建控制系统仿真模型验证该控制系统的可行性,并通过搭建基于PAC5232的实物平台对比验证龙贝格观测器相对于霍尔位置传感器的优越性。实验结果表明,该无位置传感器控制系统有效地提高了系统的响应速度和估算精度,使其能够更好地跟踪转子速度以及转子位置信息。  相似文献   

15.
This article suggests a robust cascade speed control algorithm for a permanent magnet synchronous motor (PMSM) combining the classical feedback linearising (FL) method and the disturbance observers (DOBs) without the integrators. The contributions of this method are twofold. The first one is to provide the simple DOBs for not only guaranteeing the closed-loop performance recovery property but also removing the steady-state errors without the integrators with respect to the tracking errors. The second one is to prove that the inner and outer loops are stabilised by the proposed cascade-type controller, simultaneously. The simulation and experimental results reveal that the proposed method maintains the speed tracking performance to be satisfactory for a wide operating region with the fixed control gain despite a plant-model mismatch where a 3-kW interior PMSM is utilised.  相似文献   

16.
17.
介绍了一种基于降阶线性卡尔曼算法(RLKF)的永磁同步电机(PMSM)转速与转子位置估计方法,并与传统的扩展卡尔曼算法(EKF)进行了比较,仿真结果证明,该方法不仅延续了扩展卡尔曼算法的性能优势,而且克服了EKF算法复杂等缺点,更易于数字化实现。  相似文献   

18.
A new on-line compensation scheme that can exactly estimate the dead time and inverter nonlinearity even under the parameter variations is proposed for a PWM inverter-fed permanent magnet synchronous motor drive. The proposed scheme is based on the fact that the sixth-order harmonic component in total disturbance estimated under the presence of various uncertainties is mainly caused by the dead time and inverter nonlinearity. The total disturbance due to the parameter variations as well as the dead time and inverter nonlinearity is estimated by the adaptive scheme. From this total disturbance, the sixth-order harmonic component is extracted through the harmonic analysis. The obtained sixth-order harmonic is processed by the PI controller to estimate the disturbance only caused by the dead time and inverter nonlinearity in the stationary reference frame. The effectiveness of the proposed scheme is verified through the comparative simulations and experiments using DSP TMS320F28335. Without requiring an additional hardware, the proposed scheme can effectively compensate the dead time and inverter nonlinearity even under the parameter variations.  相似文献   

19.
为研究永磁同步电机(PMSM)在无速度传感器工况下的速度跟踪估计,以PMSM的工作原理为基础,建立了内埋式PMSM的数学模型。利用自适应模糊微分积分滑模鲁棒性强的优点,提出了在自适应模糊微分积分滑模控制条件下采用旋转高频电压注入法对电机转速估计的无速度传感器控制方案,并分析了电机在高低速运行时特点。仿真结果表明,采用高频注入法的自适应模糊微分积分滑模控制系统在高、低速工况下运行时稳定可靠,并具有较好的鲁棒性,能够实现速度跟踪估计。  相似文献   

20.
This article presents a sensorless control approach of salient PMSM with an online parameter identifier. Adaptive Integrator is proposed and utilised for the estimation of active flux and rotor position. As a result, integrator overflow caused by DC offset is avoided. Meanwhile, an online stator resistance identification algorithm using strong tracking filter is employed, and the identified stator resistance is fed back to the estimating algorithm. Thus, the estimating algorithm can calculate the rotor position correctly. Simulations and experimental results validate the feasibility of both adaptive integrator and the parameter identification method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号