首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-rank matrix factorization is one of the most useful tools in scientific computing, data mining and computer vision. Among of its techniques, non-negative matrix factorization (NMF) has received considerable attention due to producing a parts-based representation of the data. Recent research has shown that not only the observed data are found to lie on a nonlinear low dimensional manifold, namely data manifold, but also the features lie on a manifold, namely feature manifold. In this paper, we propose a novel algorithm, called graph dual regularization non-negative matrix factorization (DNMF), which simultaneously considers the geometric structures of both the data manifold and the feature manifold. We also present a graph dual regularization non-negative matrix tri-factorization algorithm (DNMTF) as an extension of DNMF. Moreover, we develop two iterative updating optimization schemes for DNMF and DNMTF, respectively, and provide the convergence proofs of our two optimization schemes. Experimental results on UCI benchmark data sets, several image data sets and a radar HRRP data set demonstrate the effectiveness of both DNMF and DNMTF.  相似文献   

2.
针对非负矩阵分解后的数据稀疏性较低,训练样本偏多导致运算规模持续增大的普遍现象,本文提出基于稀疏约束的非负正则矩阵学习算法,本文算法是在样本几何结构信息条件上执行非负矩阵分解操作,并且与学习算法结合,不仅能够有效保持样本局部结构,还能够充分利用前期分解结果参加迭代运算,从而达到降低运算时间目的. 本文实验表明与其他算法比较来说,本文方法在ORL人脸数据库上最多节省时间14.84 s,在COIL20数据集上为136.1 s;而在分解后数据的稀疏性上,本文方法在ORL人脸数据库上的稀疏度提高0.0691,在COIL20数据集上为0.0587. 实验结果表明了算法有效性.  相似文献   

3.
Spectral clustering aims to partition a data set into several groups by using the Laplacian of the graph such that data points in the same group are similar while data points in different groups are dissimilar to each other. Spectral clustering is very simple to implement and has many advantages over the traditional clustering algorithms such as k-means. Non-negative matrix factorization (NMF) factorizes a non-negative data matrix into a product of two non-negative (lower rank) matrices so as to achieve dimension reduction and part-based data representation. In this work, we proved that the spectral clustering under some conditions is equivalent to NMF. Unlike the previous work, we formulate the spectral clustering as a factorization of data matrix (or scaled data matrix) rather than the symmetrical factorization of the symmetrical pairwise similarity matrix as the previous study did. Under the NMF framework, where regularization can be easily incorporated into the spectral clustering, we propose several non-negative and sparse spectral clustering algorithms. Empirical studies on real world data show much better clustering accuracy of the proposed algorithms than some state-of-the-art methods such as ratio cut and normalized cut spectral clustering and non-negative Laplacian embedding.  相似文献   

4.
针对非负矩阵分解效率低的不足,提出一种基于在线学习的稀疏性非负矩阵分解的快速方法.通过对目标函数添加正则化项来控制分解后系数矩阵的稀疏性,将问题转化成稀疏表示的字典学习问题,利用在线字典学习算法求解目标函数,并对迭代过程的矩阵更新进行转换,采取块坐标下降法进行矩阵更新,提高算法收敛速度.实验结果表明,该方法在有效保持图像特征信息的同时,运行效率得到提高.  相似文献   

5.
In crowded scenes, the extracted low-level features, such as optical flow or spatio-temporal interest point, are inevitably noisy and uncertainty. In this paper, we propose a fully unsupervised non-negative sparse coding based approach for abnormality event detection in crowded scenes, which is specifically tailored to cope with feature noisy and uncertainty. The abnormality of query sample is decided by the sparse reconstruction cost from an atomically learned event dictionary, which forms a sparse coding bases. In our algorithm, we formulate the task of dictionary learning as a non-negative matrix factorization (NMF) problem with a sparsity constraint. We take the robust Earth Mover's Distance (EMD), instead of traditional Euclidean distance, as distance metric reconstruction cost function. To reduce the computation complexity of EMD, an approximate EMD, namely wavelet EMD, is introduced and well combined into our approach, without losing performance. In addition, the combination of wavelet EMD with our approach guarantees the convexity of optimization in dictionary learning. To handle both local abnormality detection (LAD) and global abnormality detection, we adopt two different types of spatio-temporal basis. Experiments conducted on four public available datasets demonstrate the promising performance of our work against the state-of-the-art methods.  相似文献   

6.
This paper presents a novel medical image registration algorithm named total variation constrained graphregularization for non-negative matrix factorization(TV-GNMF).The method utilizes non-negative matrix factorization by total variation constraint and graph regularization.The main contributions of our work are the following.First,total variation is incorporated into NMF to control the diffusion speed.The purpose is to denoise in smooth regions and preserve features or details of the data in edge regions by using a diffusion coefficient based on gradient information.Second,we add graph regularization into NMF to reveal intrinsic geometry and structure information of features to enhance the discrimination power.Third,the multiplicative update rules and proof of convergence of the TV-GNMF algorithm are given.Experiments conducted on datasets show that the proposed TV-GNMF method outperforms other state-of-the-art algorithms.  相似文献   

7.
现有的非负矩阵分解方法既忽略数据的非局部结构,又难以有效应对噪声和野值点。为了解决上述问题,提出一种新的用于聚类的鲁棒结构正则化非负矩阵分解算法。所提出的算法分别构建一个近邻图和一个最大熵图描述数据的局部结构和非局部结构,并使用L2,1范数代价函数尝试解决噪声问题,从而学习到鲁棒具有判别力的表征。给出一个最优的迭代算法求解两个非负因子,该优化算法的收敛性已被理论和实验证明。在七个图像数据集上的聚类实验结果表明,所提出的算法在无噪声和有噪声情况下聚类均优于其他主流方法。  相似文献   

8.
非负矩阵分解是一种流行的数据表示方法,利用图正则化约束能有效地揭示数据之间的局部流形结构。为了更好地提取图像特征,给出了一种基于图正则化的稀疏判别非负矩阵分解算法(graph regularization sparse discriminant non-negative matrix factorization,GSDNMF-L2,1)。利用同类样本之间的稀疏线性表示来构建对应的图及权矩阵;以L2,1范数进行稀疏性约束;以最大间距准则为优化目标函数,利用数据集的标签信息来保持数据样本之间的流形结构和特征的判别性,并给出了算法的迭代更新规则。在若干图像数据集上的实验表明,GSDNMF-L2,1在特征提取方面的分类精度优于各对比算法。  相似文献   

9.
针对非负矩阵分解后数据的稀疏性降低、训练样本增多导致运算规模不断增大的现象,提出了一种稀疏约束图正则非负矩阵分解的增量学习算法。该方法不仅考虑数据的几何信息,而且对系数矩阵进行稀疏约束,并将它们与增量学习相结合。算法在稀疏约束和图正则化的条件下利用上一步的分解结果参与迭代运算,在节省大量运算时间的同时提高了分解后数据的稀疏性。在ORL和PIE人脸数据库上的实验结果表明了该算法的有效性。  相似文献   

10.
Transfer learning is a widely investigated learning paradigm that is initially proposed to reuse informative knowledge from related domains, as supervised information in the target domain is scarce while it is sufficiently available in the multiple source domains. One of the challenging issues in transfer learning is how to handle the distribution differences between the source domains and the target domain. Most studies in the research field implicitly assume that data distributions from the source domains and the target domain are similar in a well-designed feature space. However, it is often the case that label assignments for data in the source domains and the target domain are significantly different. Therefore, in reality even if the distribution difference between a source domain and a target domain is reduced, the knowledge from multiple source domains is not well transferred to the target domain unless the label information is carefully considered. In addition, noisy data often emerge in real world applications. Therefore, considering how to handle noisy data in the transfer learning setting is a challenging problem, as noisy data inevitably cause a side effect during the knowledge transfer. Due to the above reasons, in this paper, we are motivated to propose a robust framework against noise in the transfer learning setting. We also explicitly consider the difference in data distributions and label assignments among multiple source domains and the target domain. Experimental results on one synthetic data set, three UCI data sets and one real world text data set in different noise levels demonstrate the effectiveness of our method.  相似文献   

11.
针对多标记迁移学习中源领域与目标领域的特征分布差异会导致源领域数据无法被目标领域利用的问题,提出了一种基于最大均值差异的多标记迁移学习算法(Multi-Label Transfer Learning via Maximum mean discrepancy,M-MLTL),算法通过分解关系矩阵构造共享子空间,并采用最大均值差异(maximum mean discrepancy)作为评价指标,最小化子空间特征的分布差异,从而使源领域与目标领域的特征分布尽可能相似.多标记图像分类实验的结果表明,新算法比同类算法有更高的精度和计算效率.  相似文献   

12.
非负矩阵分解作为一种有效的数据表示方法被广泛应用于模式识别和机器学习领域。为了得到原始数据紧致有效的低维数据表示,无监督非负矩阵分解方法在特征降维的过程中通常需要同时发掘数据内部隐含的几何结构信息。通过合理建模数据样本间的相似性关系而构建的相似度图,通常被用来捕获数据样本的空间分布结构信息。子空间聚类可以有效发掘数据内部的子空间结构信息,其获得的自表达系数矩阵可用于构建相似度图。该文提出了一种非负子空间聚类算法来发掘数据的子空间结构信息,同时利用该信息指导非负矩阵分解,从而得到原始数据有效的非负低维表示。同时,该文还提出了一种有效的迭代求解方法来求解非负子空间聚类问题。在两个图像数据集上的聚类实验结果表明,利用数据的子空间结构信息可以有效改善非负矩阵分解的性能。  相似文献   

13.
郁雪  张昊男 《计算机应用研究》2020,37(4):977-981,985
基于矩阵分解技术的社会化推荐通过加入用户信任关系来加强学习准确性,但忽略了物品之间的关联信息在模型分解过程中对用户兴趣的影响。对此首先提出在物品相似度计算方法中加入用户参与度进行改进,并构建了融合物品关联正则项和信任用户正则项双重约束的矩阵分解推荐模型,在优化隐式特征矩阵过程中体现了物品之间的关联信息对推荐的重要影响。最后通过对两个不同稀疏级别的数据集的实验证明,相比主流的矩阵分解模型,提出的双重正则项的矩阵分解模型能够提高稀疏数据集上预测评分的准确性,并能明显缓解用户冷启动问题。  相似文献   

14.
In this paper, a novel sparse neighborhood preserving non-negative tensor factorization (SNPNTF) algorithm is proposed for facial expression recognition. It is derived from non-negative tensor factorization (NTF), and it works in the rank-one tensor space. A sparse constraint is adopted into the objective function, which takes the optimization step in the direction of the negative gradient, and then projects onto the sparse constrained space. To consider the spatial neighborhood structure and the class-based discriminant information, a neighborhood preserving constraint is adopted based on the manifold learning and graph preserving theory. The Laplacian graph which encodes the spatial information in the face samples and the penalty graph which considers the pre-defined class information are considered in this constraint. By using it, the obtained parts-based representations of SNPNTF vary smoothly along the geodesics of the data manifold and they are more discriminant for recognition. SNPNTF is a quadratic convex function in the tensor space, and it could converge to the optimal solution. The gradient descent method is used for the optimization of SNPNTF to ensure the convergence property. Experiments are conducted on the JAFFE database, the Cohn–Kanade database and the AR database. The results demonstrate that SNPNTF provides effective facial representations and achieves better recognition performance, compared with non-negative matrix factorization, NTF and some variant algorithms. Also, the convergence property of SNPNTF is well guaranteed.  相似文献   

15.
In this work, we aim to discover real-world events from Flickr data by devising a three-stage event detection framework. In the first stage, a multimodal fusion (MF) model is designed to deal with the heterogeneous feature modalities possessed by the user-shared data, which is advantageous in computation complexity. In the second stage, a dual graph regularized non-negative matrix factorization (DGNMF) model is proposed to learn compact feature representations. DGNMF incorporates Laplacian regularization terms for the data graph and base graph into the objective, keeping the geometry structures underlying the data samples and dictionary bases simultaneously. In the third stage, hybrid clustering algorithms are applied seamlessly to discover event clusters. Extensive experiments conducted on the real-world dataset reveal the MF-DGNMF-based approaches outperform the baselines.  相似文献   

16.
李志恒 《计算机应用研究》2021,38(2):591-594,599
针对机器学习中训练样本和测试样本概率分布不一致的问题,提出了一种基于dropout正则化的半监督域自适应方法来实现将神经网络的特征表示从标签丰富的源域转移到无标签的目标域。此方法从半监督学习的角度出发,在源域数据中添加少量带标签的目标域数据,使得神经网络在学习到源域数据特征分布的同时也能学习到目标域数据的特征分布。由于有了先验知识的指导,即使没有丰富的标签信息,神经网络依然可以很好地拟合目标域数据。实验结果表明,此算法在几种典型的数字数据集SVHN、MNIST和USPS的域自适应任务上的性能优于现有的其他算法,并且在涵盖广泛自然类别的真实数据集CIFAR-10和STL-10的域自适应任务上有较好的鲁棒性。  相似文献   

17.
This paper investigates the problem of cross-domain action recognition. Specifically, we present a cross-domain action recognition framework by utilizing some labeled data from other data sets as the auxiliary source domain. It is a challenging task as data from different domains may have different feature distribution. To map data from different domains into the same abstract space and boost the action recognition performance, we propose a method named collective matrix factorization with graph Laplacian regularization (CMFGLR). Our approach is built upon the technique of collective matrix factorization, which simultaneously learns a common latent space, linear projection matrices for obtaining semantic representations, and an optimal linear classifier. Moreover, we explore the label consistency across different domain and the local geometric consistency in each domain and obtain a graph Laplacian regularization term to enhance the discrimination of learned features. Experimental results verify that CMFGLR significantly outperforms several state-of-the-art methods.  相似文献   

18.
挖掘数据网络中有价值的、具有稳定性的社区,对网络信息的获取、推荐及网络的演化预测具有重要的价值。针对现有异质网络聚类方法难以在同一维度有效整合网络中异质信息的问题,提出了一种基于图正则化非负矩阵分解的异质网络聚类方法。通过加入图正则项,将中心类型子空间和属性类型子空间的内部连接关系作为约束项,引入到非负矩阵分解模型中,从而找到高维数据在低维空间的紧致嵌入,成功消除了异质节点之间的部分噪声,同时,对反映不同子网络共有潜在结构的共识矩阵进行优化,有效整合异质信息,并且在降维过程中较大限度地保留了异质信息的完整性,提高了异质网络聚类方法的精度,在真实世界数据集上的实验结果也验证了该方法的有效性。  相似文献   

19.
In this paper, we use a two-stage sparse factorization approach for blindly estimating the channel parameters and then estimating source components for electroencephalogram (EEG) signals. EEG signals are assumed to be linear mixtures of source components, artifacts, etc. Therefore, a raw EEG data matrix can be factored into the product of two matrices, one of which represents the mixing matrix and the other the source component matrix. Furthermore, the components are sparse in the time-frequency domain, i.e., the factorization is a sparse factorization in the time frequency domain. It is a challenging task to estimate the mixing matrix. Our extensive analysis and computational results, which were based on many sets of EEG data, not only provide firm evidences supporting the above assumption, but also prompt us to propose a new algorithm for estimating the mixing matrix. After the mixing matrix is estimated, the source components are estimated in the time frequency domain using a linear programming method. In an example of the potential applications of our approach, we analyzed the EEG data that was obtained from a modified Sternberg memory experiment. Two almost uncorrelated components obtained by applying the sparse factorization method were selected for phase synchronization analysis. Several interesting findings were obtained, especially that memory-related synchronization and desynchronization appear in the alpha band, and that the strength of alpha band synchronization is related to memory performance.  相似文献   

20.
Joint modeling of related data sources has the potential to improve various data mining tasks such as transfer learning, multitask clustering, information retrieval etc. However, diversity among various data sources might outweigh the advantages of the joint modeling, and thus may result in performance degradations. To this end, we propose a regularized shared subspace learning framework, which can exploit the mutual strengths of related data sources while being immune to the effects of the variabilities of each source. This is achieved by further imposing a mutual orthogonality constraint on the constituent subspaces which segregates the common patterns from the source specific patterns, and thus, avoids performance degradations. Our approach is rooted in nonnegative matrix factorization and extends it further to enable joint analysis of related data sources. Experiments performed using three real world data sets for both retrieval and clustering applications demonstrate the benefits of regularization and validate the effectiveness of the model. Our proposed solution provides a formal framework appropriate for jointly analyzing related data sources and therefore, it is applicable to a wider context in data mining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号