共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
分析了传统的主成分分析方法的不足,论述了KPCA方法及其时间复杂度高的缺陷。在此基础上,提出基于核函数构造的协方差矩阵的主成分分析,相比 KPCA,该方法具有快的降维速度。实验结果显示:把该方法用于QAR数据具有良好的降维效果和高分类正确率。 相似文献
3.
基于正交函数逼近理论,在Haar小波正交规范基的基础上,总结并推导出了其积分运算矩阵、微分运算矩阵、乘积运算矩阵及其运算性质,并应用于一类时变非线性分布参数系统的辨识.借助于正交小波函数逼近方法对分布参数系统进行辨识,经正交小波逼近变换转化为代数矩阵方程,因此该方法可以不考虑初始条件和边界条件,较其他辨识方法要简单得多.该算法简单、计算量小、简化了分布参数系统辨识的求解过程,应用在分布参数系统辨识中不失为一种有效的分析方法. 相似文献
4.
5.
6.
核函数方法可挖掘出高精度快速印刷品图像间的非线性分布规律,而挖掘能力由所选择的核函数及其参数来决定。这两者的学习与选择同样是核函数理论继续发展与实际应用需要迫切解决的问题。针对印刷品智能检测这一特定背景,提出了一种新的基于优化问题的从具有动态参数的函数空间中学习核函数及参数的方法,以此来使核函数方法达到最优性能。与传统的计算方法不同之处在于其核函数空间中的核参数是连续变化的,这使学习的范围得到一个维度上的扩展。实验结果显示,结合理论分析的迭代算法仅需要10次迭代便可得到统计最优的核函数及参数,利用学习到的核函数计算的复原误差是统计最小的。 相似文献
7.
目前腐蚀疲劳破坏预测方法精度不高.提出基于小波多分辨分析法(MRA),在再生核希尔伯特空间构建一种多尺度核函数的最小二乘支持向量机(multi-scale kernel LSSVM,MSK_LSSVM)预测算法.根据Mercer平移不变核定理,构造了多尺度复Gaussian小波核函数.由于多尺度核函数能够通过平移生成L2(R2)子空间的一组完备基,因此MSK_LSSVM可以任意逼近目标函数,更具灵活性.经仿真实验验证,与BP神经网络方法、标准支持向量机、灰色系统预测模型方法对比,机械结构中铆接件腐蚀变化的趋势通过MSK_LSSVM预测,准确率高、时间短. 相似文献
8.
针对网络入侵检测,提出一种基于小波核主成分分析和差分进化极限学习机相结合的方法。首先采用核主成分分析法对原始数据进行非线性降维处理,为了进一步提高核PCA的非线性映射能力,引用小波核函数作为核PCA的核函数。然后采用极限学习机对处理后的数据进行分类识别,针对初始权值随机选择造成极限学习机性能不稳定的问题,采用差分进化算法来获得最优的初始权值。实验结果表明该算法可以有效提高入侵检测的识别率,降低误报率和漏报率。 相似文献
9.
图像变化检测是遥感图像处理领域重要方向,大多数变化检测算法都存在算法复杂度高、抗噪性弱等缺陷,利用对偶树复小波变换的平移不变性与能提高方向分辨率的优点,把对偶树复小波变换运用于变化检测中,可以提高图像细节变化的检测和算法抗噪性。首先用对偶树复小波变换对图像进行尺度分解,把图像在每个尺度上分解成一个低通子图和六个方向的高通子图。然后运用PCA(主向量分析法)提取每个尺度与方向上的特征并降维,然后运用k均值算法将图像像素分成为变化与不变化两类,最后通过多尺度融合,得到变化检测图像。 相似文献
10.
11.
提出了一种基于各向异性高斯核核惩罚的主成分分析的特征提取算法.该算法不同于传统的核主成分分析算法.在非线性数据降维中,传统的核主成分分析算法忽略了原始数据的无量纲化.此外,传统的核函数在各维度上主要由一个相同的核宽参数控制,该方法无法准确反映各维度不同特征的重要性,从而导致降维过程中准确率低下.为了解决上述问题,首先针对现原始数据的无量纲化问题,提出了一种均值化算法,使得原始数据的总方差贡献率有明显的提高.其次,引入了各向异性高斯核函数,该核函数每个维度拥有不同的核宽参数,各核宽参数能够准确地反映所在维度数据特征的重要性.再次,基于各向异性高斯核函数建立了核主成分分析的特征惩罚目标函数,以便用较少的特征表示原始数据,并反映每个主成分信息的重要性.最后,为了寻求最佳特征,引入梯度下降算法来更新特征惩罚目标函数中的核宽度和控制特征提取算法的迭代过程.为了验证所提出算法的有效性,各算法在UCI公开数据集上和KDDCUP99数据集上进行了比较.实验结果表明,所提基于各向异性高斯核核惩罚的主成分分析的特征提取算法比传统的主成分分析算法在9种公开的UCI公开数据集上准确率平均提高了4.49%.在KDDCUP99数据集上,所提基于各向异性高斯核核惩罚的主成分分析的特征提取算法比传统的主成分分析算法准确率提高了8%. 相似文献
12.
13.
大多数超椭球聚类(hyper-ellipsoidal clustering,HEC)算法都使用马氏距离作为距离度量,已经证明在该条件下划分聚类的代价函数是常量,导致HEC无法实现椭球聚类.本文说明了使用改进高斯核的HEC算法可以解释为寻找体积和密度都紧凑的椭球分簇,并提出了一种实用HEC算法-K-HEC,该算法能够有效地处理椭球形、不同大小和不同密度的分簇.为实现更复杂形状数据集的聚类,使用定义在核特征空间的椭球来改进K-HEC算法的能力,提出了EK-HEC算法.仿真实验证明所提出算法在聚类结果和性能上均优于K-means算法、模糊C-means算法、GMM-EM算法和基于最小体积椭球(minimum-volume ellipsoids,MVE)的马氏HEC算法,从而证明了本文算法的可行性和有效性. 相似文献
14.
基于小波特征的快速核主分量分析技术 总被引:2,自引:0,他引:2
论文提出了基于小波特征的核主分量分析技术,即在进行非线性映射之前,首先利用小波变换对原始输入训练样本进行预处理,获取低频平滑、水平细节和垂直细节等三个子图的小波特征,然后在频域上,对它们分别进行核主分量分析(KPCA),对最终获得的3组特征向量设计了一种特征融合的方法。在ORL标准人脸库上的试验结果表明所提方法不仅在识别性能上优于现有的核主分量分析方法,而且,特征抽取速度提高了11倍。 相似文献
15.
一种基于Morlet小波核的约简支持向量机 总被引:7,自引:0,他引:7
针对支持向量机(SVM)的训练数据量仅局限于较小样本集的问题,结合Morlet小波核函数,提出了一种基于Morlet小波核的约倚支持向量机(MWRSVM—DC).算法的核心是通过密度聚类寻找聚类中每个簇的边缘点作为约倚集合,并利用该约倚集合寻找支持向量.实验表明,利用小波核,该算法不仅提高了分类的准确率,而且提高了整体分类效率. 相似文献
16.
针对电子系统故障诊断中有效特征提取困难,核属性约简方法中核函数与核参数选择繁琐等问题,提出了一种基于自优化小波核稀疏保持投影的子空间特征提取方法。通过对核极化准则的改进,使得新准则不仅可以处理多类别信息,而且可以保留同一类别数据间的局部结构特征。以墨西哥帽小波核函数为对象,基于改进的核评估准则构建优化目标函数,并采用粒子群优化算法进行核参数选择。将优化的小波核作为核稀疏保持投影的核函数,最终实现了在核子空间中对有效特征的提取。实验结果表明,相比于其它流形的子空间特征提取方法,提出的方法有效提升了分类精度,具有良好的泛化性能。 相似文献
17.
18.
面向提高图像分辨率的遥感数据融合新算法 总被引:7,自引:0,他引:7
在遥感应用研究中,数据融合技术有着非常广泛的应用.主分量分析方法(principalcomponentanalysis,简称PCA)是一种经典的遥感数据融合技术,在主分量分析方法的基础上,将小波变换与其结合起来,提出了一种新的基于小波叠加的PCA融合算法(addingwaveletcoefficientsprincipalcomponentanalysis,简称AWPCA).实验证明,与原来的PCA和IHS方法相比,基于小波叠加的PCA融合算法进一步提高了融合信息的质量,并能应用于其他需要高分辨率图像的场合中. 相似文献
19.
基于分块PCA的人脸识别方法 总被引:3,自引:0,他引:3
本文提出了一种称为M2PCA+FDA的新的人脸识别方法.新方法从模式的原始数字图像出发,先对样本图像进行分块,对分块得到的子图像矩阵采用PCA进行特征抽取,从而得到能代替原始模式的低维的新模式,然后,对新模式施行“Fisherfaces”方法,实现模式的分类.其特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类.在ORL和NUST603两个人脸数据库上对M2PCAA-FDA方法进行了测试,实验的结果表明,本文提出的方法在识别性能上优于“Fisherfaces”方法和PCA方法. 相似文献
20.
提出一种用于间歇生产过程中异常数据控制的方法。这种方法将原始的三维间歇生产数据集合展开成一个二维数据矩阵,进行中心化和规格化后再转化成另一个按照时间序列排列的二维数据矩阵。这种方法可以克服Wold方法在对数据进行中心化时引起的原始信息失真问题。通过对聚合反应釜过程数据进行分析,表明该方法能有效地对生产数据剔除异常。 相似文献