共查询到18条相似文献,搜索用时 93 毫秒
1.
基于区间B样条小波有限元的移动荷载识别 总被引:1,自引:0,他引:1
小波有限元以区间B样条小波尺度函数为插值函数构造小波有限元单元,并通过单元转换矩阵建立小波空间与物理空间各参数之间的关系.采用动态规划法与Tikhonov正则化法识别移动荷载,避免了直接处理反问题时的振荡与数值计算病态解等问题.算例采用所测得的部分离散点的动态响应数据为已知信息,验证了小波有限元的优越性及小波的多尺度特... 相似文献
2.
3.
压电层合板的B样条小波有限元半解析法 总被引:1,自引:0,他引:1
利用小波有限元法的优越性可方便地求解压电材料与复合材料混合层合板的某些静力学问题。根据层合结构的特点,将区间B样条尺度函数作为插值函数离散结构的平面域,应用压电材料修正后的H-R(Hellinger-Reissner)变分原理推导了压电材料的Hamilton正则方程的区间B样条小波(BSWI)元列式。该BSWI元的主要特点之一是厚度方向是解析解形式的。针对具体问题的求解,为了保证各层之间力学量和电学量的连续性,进一步应用了状态转移矩阵技术。数值算例表明所提出的区间B样条小波单元是成功的。采用推导压电材料BSWI元的方法可建立磁电弹性材料类似的BSWI元。 相似文献
4.
基于区间B样条小波(B-Spline Wavelet on the Interval, BSWI)和多变量广义势能函数,该文构造了二类变量小波有限单元,并用于一维结构的弯曲与振动分析。基于广义变分原理,从多变量广义势能函数出发,推导得到多变量有限元列式,并以区间B样条小波尺度函数作为插值函数对两类广义场变量进行离散。此单元的优势在于可以提高广义力的求解精度,因为在传统有限元中,只有一类广义位移场函数,所以广义力通常是通过对位移的求导得到,而多变量单元中,广义位移和广义力都是作为独立变量处理的,避免了求导运算。此外,区间B样条小波是现有小波中数值逼近性能非常好的小波函数,以它作为插值函数可进一步保证求解精度。转换矩阵的应用,可以将无任何明确物理意义的小波系数转换到相应的物理空间,方便了问题的处理。最后,通过数值算例对Euler梁和平面刚架的分析,验证了此单元的正确性和有效性。 相似文献
5.
在有限区间带边界条件的小波插值与分解 总被引:2,自引:0,他引:2
小波是近年国际研究的热点,被认为是在工具及方法上取得重大突破的分析学中一个完美的结晶,在众多领域中有广泛的用途。最初小波是在无穷区间中研究的,实际问题往往出现在有限区间,有时还带边界条件,用原来方法小波分解并不理想,f0(t)≠f-1(t)+g-1(t),f-1(t)与g-1(t)又不正交,∫a^bf-1(t)g-1(t)dt≠0。重建时出现失真。本文试图解决这个问题,联系到B样条与小波的关系,比 相似文献
6.
7.
本文研究的是时变动力学结构的参数识别问题。仅利用线性时变结构的多个加速度响应测量数据,本文将区间B样条小波函数作为时变基函数,构造了基于区间B样条小波基函数的时变多变量自回归模型,并推导了时变结构瞬时频率的识别方法。文中利用该法对一个三自由度线性时变结构进行了仿真研究,针对结构瞬时频率周期变化,突变和线性变化三种不同的情况分别进行了瞬时频率识别,并在加速度响应数据中加入了不同信噪比的高斯白噪声以检验识别方法的抗噪能力。最后,文中对一个具有质量时变特性的悬臂梁结构进行了实验研究,实验结果充分说明了区间B样条小波基函数时变多变量自回归模型对时变结构参数识别的可行性,有效性和良好的抗噪能力。 相似文献
8.
9.
基于小波有限元的悬臂梁裂纹识别 总被引:11,自引:2,他引:11
研究了悬臂梁裂纹识别中的正反问题.即通过裂纹位置和尺寸求解梁的固有频率以及利用梁的固有频率.识别裂纹位置和尺寸。以矩形截面裂纹悬臂梁为例,利用小波有限元方法建立了梁自由振动的有限元模型.其中裂纹被看作为一刚度已知的扭转线弹簧,求解出了系统的固有频率;通过行列式变换,将反问题求解简化为只含线弹簧刚度一个未知数的一元二次方程求根问题,分别做出了以不同固有频率作为输入值时裂纹位置与弹簧刚度之间的解曲线,曲线交点预测出裂纹的位置与尺寸。数值算例证实了算法的有效性,为工程结构裂纹故障预示与诊断提供了新的方法。 相似文献
10.
11.
By interacting and synchronizing wavelet theory in mathematics and variational principle in finite element method, a class
of wavelet-based plate element is constructed. In the construction of wavelet-based plate element, the element displacement
field represented by the coefficients of wavelet expansions in wavelet space is transformed into the physical degree of freedoms
in finite element space via the corresponding two-dimensional C1 type transformation matrix. Then, based on the associated generalized function of potential energy of thin plate bending
and vibration problems, the scaling functions of B-spline wavelet on the interval (BSWI) at different scale are employed directly
to form the multi-scale finite element approximation basis so as to construct BSWI plate element via variational principle.
BSWI plate element combines the accuracy of B-spline functions approximation and various wavelet-based elements for structural
analysis. Some static and dynamic numerical examples are studied to demonstrate the performances of the present element. 相似文献
12.
Adopting the scaling functions of B-spline wavelet on the interval (BSWI) as trial functions, a new finite element method
(FEM) of BSWI is presented. Instead of traditional polynomial interpolation, scaling functions at the certain scale have been
adopted to form the shape functions and construct wavelet-based elements. Unlike the process of wavelets added directly in
the other wavelet numerical methods, the element displacement field represented by the coefficients of wavelets expansions
is transformed from wavelet space to physical space via the corresponding transformation matrix. The transformation matrix
is the key to construct wavelet-based elements freely as long as we can ensure its non-singularity. Then, classes of C0 and C1 type elements are constructed. And the lifting scheme of BSWI elements is also discussed. The numerical examples indicate
that the BSWI elements have higher efficiency and precision than traditional finite element method in solving 1D structural
problems especially for geometric nonlinear, variable cross-section and loading cases. 相似文献
13.
S. Tanaka H. Okada S. Okazawa M. Fujikubo 《International journal for numerical methods in engineering》2013,93(10):1082-1108
This paper presents fracture mechanics analysis using the wavelet Galerkin method and extended finite element method. The wavelet Galerkin method is a new methodology to solve partial differential equations where scaling/wavelet functions are used as basis functions. In solid/structural analyses, the analysis domain is divided into equally spaced structured cells and scaling functions are periodically placed throughout the domain. To improve accuracy, wavelet functions are superposed on the scaling functions within a region having a high stress concentration, such as near a hole or notch. Thus, the method can be considered a refinement technique in fixed‐grid approaches. However, because the basis functions are assumed to be continuous in applications of the wavelet Galerkin method, there are difficulties in treating displacement discontinuities across the crack surface. In the present research, we introduce enrichment functions in the wavelet Galerkin formulation to take into account the discontinuous displacements and high stress concentration around the crack tip by applying the concept of the extended finite element method. This paper presents the mathematical formulation and numerical implementation of the proposed technique. As numerical examples, stress intensity factor evaluations and crack propagation analyses for two‐dimensional cracks are presented. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
14.
15.
Jian‐Gang Han Wei‐Xin Ren Yih Huang 《International journal for numerical methods in engineering》2006,66(1):166-190
The wavelet‐based methods are powerful to analyse the field problems with changes in gradients and singularities due to the excellent multi‐resolution properties of wavelet functions. Wavelet‐based finite elements are often constructed in the wavelet space where field displacements are expressed as a product of wavelet functions and wavelet coefficients. When a complex structural problem is analysed, the interface between different elements and boundary conditions cannot be easily treated as in the case of conventional finite‐element methods (FEMs). A new wavelet‐based FEM in structural mechanics is proposed in the paper by using the spline wavelets, in which the formulation is developed in a similar way of conventional displacement‐based FEM. The spline wavelet functions are used as the element displacement interpolation functions and the shape functions are expressed by wavelets. The detailed formulations of typical spline wavelet elements such as plane beam element, in‐plane triangular element, in‐plane rectangular element, tetrahedral solid element, and hexahedral solid element are derived. The numerical examples have illustrated that the proposed spline wavelet finite‐element formulation achieves a high numerical accuracy and fast convergence rate. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
16.
Su Hao Wing Kam Liu Ted Belytschko 《International journal for numerical methods in engineering》2004,59(7):1007-1020
We describe a new version of the moving particle finite element method (MPFEM) that provides solutions within a C0 finite element framework. The finite elements determine the weighting for the moving partition of unity. A concept of ‘General Shape Function’ is proposed which extends regular finite element shape functions to a larger domain. These are combined with Shepard functions to obtain a smooth approximation. The Moving Particle Finite Element Method combines desirable features of finite element and meshfree methods. The proposed approach, in fact, can be interpreted as a ‘moving partition of unity finite element method’ or ‘moving kernel finite element method’. This method possesses the robustness and efficiency of the C0 finite element method while providing at least C1 continuity. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
17.
18.
Robert Gracie Giulio Ventura Ted Belytschko 《International journal for numerical methods in engineering》2007,69(2):423-441
A new technique for the modelling of multiple dislocations based on introducing interior discontinuities is presented. In contrast to existing methods, the superposition of infinite domain solutions is avoided; interior discontinuities are specified on the dislocation slip surfaces and the resulting boundary value problem is solved by a finite element method. The accuracy of the proposed method is verified and its efficiency for multi‐dislocation problems is illustrated. Bounded core energies are incorporated into the method through regularization of the discontinuities at their edges. Though the method is applied to edge dislocations here, its extension to other types of dislocations is straightforward. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献