首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Mg x Zn1-x O thin films with a Mg content corresponding to x = 0–0.45 are grown by pulsed laser deposition on ablation of ceramic targets. The conditions for epitaxial growth of the films on the single-crystal Al2O3 (00.1) substrates are established. The record limit of solubility of Mg in hexagonal ZnO, x = 35 is attained. In this case, the lattice mismatch for the parameter a of the ZnO and Mg0.35Zn0.65O films does not exceed 1%, whereas the band gaps of the films differ by 0.78 eV. The surface roughness of the films corresponds to 0.8–1.5 nm in the range of x = 0–0.27.  相似文献   

2.
We discuss the thermoelectric properties of Na x CoO2 using the electronic structure, as determined in first principles calculations, and Boltzmann kinetic transport theory. The Fermi energy lies near the top of a manifold of Co t 2g bands. These t 2g bands are separated by a large gap from the higher-lying e g states. Although the large crystal-field splitting implies substantial Co–O hybridization, the bands are narrow. Application of standard Boltzmann transport theory to such a narrow band structure yields high thermopowers in accord with experimental observations, even for high metallic carrier densities. The high thermopowers observed for Na x CoO2 can therefore be explained by standard band theory and do not rely on low dimensionality or correlation effects specific to Co. We also present results for the cubic spinel structure ZnRh2O4. Like Na x CoO2, this compound has very narrow valence bands. We find that if it could be doped with mobile carriers, it would also have a high thermopower, comparable with that of Na x CoO2.  相似文献   

3.
Thermoelectric Sb x Te y films were potentiostatically electrodeposited in aqueous nitric acid electrolyte solutions containing different concentrations of TeO2. Stoichiometric Sb x Te y films were obtained by applying a voltage of −0.15 V versus saturated calomel electrode (SCE) using a solution consisting of 2.4 mM TeO2, 0.8 mM Sb2O3, 33 mM tartaric acid, and 1 M HNO3. The nearly stoichiometric Sb2Te3 films had a rhombohedral structure, R[`3]m R\bar{3}m , with a preferred orientation along the (015) direction. The films had hole concentration of 5.8 × 1018/cm3 and exhibited mobility of 54.8 cm2/Vs. A more negative potential resulted in higher Sb content in the deposited Sb x Te y films. Furthermore, it was observed that the hole concentration and mobility decreased with increasingly negative deposition potential, and eventually showed insulating properties, possibly due to increased defect formation. The absolute value of the Seebeck coefficient of the as-deposited Sb2Te3 thin film at room temperature was 118 μV/K.  相似文献   

4.
Electron diffraction was used to study the formation of phases in a Bi-S system. It is shown that the phase with composition Bi2S3 appears as result of consecutive deposition of Bi and S irrespective of the order of deposition; this phase also appears in the case of simultaneous deposition of components. The films formed at room temperature are amorphous. Amorphous thin Bi2S3 films are stable at room temperature and crystallize at temperatures in the region of ~423 K. The conditions for formation of Bi2S3 films with different substructures are established.  相似文献   

5.
Ca5Al2Sb6 is a relatively inexpensive Zintl compound exhibiting promising thermoelectric efficiency at temperatures suitable for waste heat recovery. Motivated by our previous studies of Ca5Al2Sb6 doped with Na and Zn, this study focuses on doping with Mn2+ at the Al3+ site. While Mn is a successful p-type dopant in Ca5Al2Sb6, we find that incomplete dopant activation yields lower hole concentrations than obtained with either previously investigated dopant. High-temperature Hall effect and Seebeck coefficient measurements show a transition from nondegenerate to degenerate semiconducting behavior in Ca5Al2−x Mn x Sb6 samples (x = 0.05, 0.1, 0.2, 0.3, 0.4) with increasing Mn content. Ultimately, no improvement in zT is achieved via Mn doping, due in part to the limited carrier concentration range achieved.  相似文献   

6.
Nd/Nb-co-substituted Bi3.15Nd0.85Ti3?x Nb x O12 (BNTN x , x = 0.01, 0.03, 0.05 and 0.07) thin films were grown on Pt/Ti/SiO2/Si (100) substrates by chemical solution deposition. The effects of Nb content on the micro-structural, dielectric, ferroelectric, leakage current and capacitive properties of the BNTN x thin films were investigated. A low-concentration substitution with Nb ions in BNTN x can greatly enhance its remanent polarization (2P r) and reduce the coercive field (2E c) compared with those of Bi4Ti3O12 (BIT) thin film. The highest 2P r (71.4 μC/cm2) was observed in the BNTN0.03 thin film when the 2E c was 202 kV/cm. Leakage currents of all the films were on the order of 10?6 to 10?5 A/cm2, and the BNTN0.03 thin film has a minimum leakage current (2.1 × 10?6 A/cm2) under the high electric field (267 kV/cm). Besides, the CV curve of the BNTN0.03 thin film is the most symmetrical, and the maximum tunability (21.0%) was also observed in this film. The BNTN0.03 thin film shows the largest dielectric constant and the lowest dielectric loss and its maximum Curie temperature is 410 ± 5°C.  相似文献   

7.
For widespread application of thin-film photovoltaic solar cells, synthesis of inexpensive absorber material is essential. In this work, deposition of ternary Cu3BiS3 absorber material, which contains abundant and environmentally benign elements, was carried out on glass substrate. Flowerlike Cu3BiS3 thin films with nanoflakes as building block were formed on glass substrate by chemical bath deposition. These films were annealed at 573 K and 673 K in sulfur ambient for structural improvement. Their structure was characterized using Raman spectroscopy, as well as their surface morphological and optical properties. The x-ray diffraction profile of as-deposited Cu3BiS3 thin film revealed amorphous structure, which transformed to orthorhombic phase after annealing. The Raman spectrum exhibited a characteristic peak at 290 cm?1. Scanning electron microscopy of as-deposited Cu3BiS3 film confirmed formation of nanoflowers with diameter of around 1052 nm. Wettability testing of as-deposited Cu3BiS3 thin film demonstrated hydrophobic nature, which became hydrophilic after annealing. The measured ultraviolet–visible (UV–Vis) absorption spectra of the Cu3BiS3 thin films gave an absorption coefficient of 105 cm?1 and direct optical bandgap of about 1.42 eV after annealing treatment. Based on all these results, such Cu3BiS3 material may have potential applications in the photovoltaic field as an absorber layer.  相似文献   

8.
Ba6−3xNd8+2xTi18O54 with x=0.25 (BNT-0.25, or simply, BNT) dielectric thin films with a thickness of 320 nm have been prepared on Pt-coated silicon substrates by pulsed laser deposition (PLD) at the substrate temperature of 650°C in 20 Pa oxygen ambient. X-ray analysis showed that the as-deposited films are amorphous and the films remain amorphous after a postannealing at 750°C for 30 min. The dielectric constant of the BNT films has been determined to be about 80 with a low loss tan δ of about 0.006 at 1 MHz. The capacitance-voltage (C-V), capacitance-frequency, and capacitance-temperature characteristics of a BNT capacitor with Pt top electrode were measured. A low leakage-current density of 4×10−6 A/cm2 at 6 V was measured, and a preliminary discussion of the leakage-current mechanism is also given. It is proposed that amorphous BNT-0.25 thin films will be a potential dielectric material for microwave applications.  相似文献   

9.
Single-crystal x-ray diffraction and high-resolution electron microscopy studies were carried out for Co-121 ([Ca2CoO3] p CoO2) and Sr-doped Co-121 grown in a KCl flux at 810°C. Typically, the samples were 2 mm × 2 mm × 0.02 mm in size. The single-crystal diffraction intensities were measured by the use of a four-circle diffractometer. Twinned super reflections, e.g., and were observed in the electron diffraction patterns. These super reflections were not observed in the end-member. Diffuse scattering was observed in the same reciprocal space by the single-crystal x-ray diffraction study. A discommensurate crystal model is proposed for the Sr-doped system.  相似文献   

10.
Ge1−x Sn x thin films are interesting for all-group-IV optoelectronics because of a crossover to a direct bandgap with dilute Sn alloying. However, Sn has vanishing room-temperature equilibrium solubility in Ge, making their synthesis very challenging. Herein, we report on our attempts to synthesize Ge1−x Sn x films on Ge (001) using ion implantation and pulsed laser melting (II-PLM). A maximum of 2 at.% Sn was incorporated with our experimental conditions in the samples as determined by Rutherford back scattering spectroscopy. A red-shift in the Ge optical phonon branch and increased absorption below the Ge bandgap with increasing Sn concentration indicate Sn-induced lattice- and band-structure changes after II-PLM. However, ion-channeling and electron microscopy show that the films are not of sufficient epitaxial quality for use in devices.  相似文献   

11.
Optical and dielectric properties and microstructures of ZnO-doped (Zr0.8Sn0.2)TiO4 thin films prepared by radiofrequency (rf)-magnetron sputtering on indium tin oxide/glass substrates at different rf powers and substrate temperatures have been investigated. Selected-area diffraction patterns showed that the deposited films exhibited a polycrystalline microstructure. All films exhibited the ZnO-doped (Zr0.8Sn0.2)TiO4 structure with the (111) orientation perpendicular to the substrate surface. The grain size as well as the deposition rate of the film increased with an increase in both rf power and substrate temperature. At an annealing temperature of 700°C, the ZnO-doped (Zr0.8Sn0.2)TiO4 film possessed a dielectric constant of 47 at 10 MHz, a dissipation factor of 0.02 at 10 MHz, a leakage current density of 7.35 × 10−9  A/cm2 at an electrical field of 1 kV/cm, average transmission in the visible range of over 70%, and an optical bandgap of 3.6 eV. This film will allow fabrication of fully transparent semiconductor devices such as a resistive random-access memory (RRAM) and thin-film transistors (TFTs) completely based on ZnO-doped (Zr0.8Sn0.2)TiO4 thin films.  相似文献   

12.
The effects of atomic hydrogen (H) and Br/methanol etching on Hg1−x Cd x Te films were investigated using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Exposure of an as-received Hg1−x Cd x Te sample to H + H2 resulted in H-induced TeO2 reduction. The oxide reduction was first order with respect to H + H2 exposure. Exposure to H + H2 after etching the Hg1−x Cd x Te film in a Br/methanol solution induced Hg and C depletion. Hg and C removal was also observed after completely reducing the TeO2 on the as-received sample. The removal process was hindered by the formation of a Cd-rich overlayer on both etched and unetched surfaces.  相似文献   

13.
Calcium copper titanium oxide (CaCu3Ti4O12, abbreviated to CCTO) films were deposited on Pt/Ti/SiO2/Si substrates at room temperature (RT) by radiofrequency magnetron sputtering. As-deposited CCTO films were treated by rapid thermal annealing (RTA) at various temperatures and in various atmospheres. X-ray diffraction patterns and scanning electron microscope (SEM) images demonstrated that the crystalline structures and surface morphologies of CCTO thin films were sensitive to the annealing temperature and ambient atmosphere. Polycrystalline CCTO films could be obtained when the annealing temperature was 700°C in air, and the grain size increased signifi- cantly with annealing in O2. The 0.8-μm CCTO thin film that was deposited at RT for 2 h and then annealed at 700°C in O2 exhibited a high dielectric constant (ε′) of 410, a dielectric loss (tan δ) of 0.17 (at 10 kHz), and a leakage current density (J) of 1.28 × 10−5 A/cm2 (at 25 kV/cm).  相似文献   

14.
The mechanism responsible for the charge transport in thin ferroelectric Hf0.5Zr0.5O2 films has been studied. It is shown that in these films the transport mechanism is phonon-assisted tunneling between the traps. The optimal thickness of dielectric film for TiN/Hf0.5Zr0.5O2/Pt structures is determined. As a result of comparing the experimental current–voltage (I–V) characteristics of TiN/Hf0.5Zr0.5O2/Pt structures with the calculated ones, the thermal and optical energies of the traps are determined and the concentration of the traps is estimated. A comparison between the transport properties of ferroelectric and amorphous Hf0.5Zr0.5O2 films is carried out. It is shown that the charge transport mechanism in this dielectric does not depend on its crystalline phase. A method for decreasing leakage currents in Hf0.5Zr0.5O2 is proposed. A study of the resource of repolarization cycles for TiN/Hf0.5Zr0.5O2/TiN metal-dielectric-metal (MDM) structures fully grown by atomic layer deposition (ALD) has been carried out.  相似文献   

15.
The effects of Ar+ radiofrequency (RF) plasma pretreatment conditions on the interfacial adhesion energy of a Cu/Cr/Al2O3 system were investigated for thin-film capacitors in embedded printed circuit board applications. The interfacial adhesion energy was evaluated from 90 deg peel tests by calculating the plastic deformation energy of peeled metal films from the energy balance relationship during the steady-state peeling process. The interfacial adhesion energy was fivefold higher after RF plasma pretreatment of the surface of 50-nm-thick Al2O3 prepared by atomic layer deposition. Atomic force microscopy, Auger electron spectroscopy, and x-ray photoemission spectroscopy results clearly reveal that this increase can be attributed to both mechanical interlocking and chemical bonding effects.  相似文献   

16.
A recent trend in thermoelectrics is miniaturization of generators or Peltier coolers using the broad spectrum of thin-film and nanotechnologies. Power supplies for energy self-sufficient micro and sensor systems are a wide application field for such generators. It is well known that thermal treatment of as-deposited p-type (Bi0.15Sb0.85)2Te3 films leads to enhancement of their power factors. Whereas up to now only the start (as-deposited) and the end (after annealing) film stages were investigated, herein for the first time, the dynamical changes of sputter-deposited film properties have been observed by real-time measurements. The electrical conductivity shows a distinct, irreversible increase during a thermal cycle of heating to about 320°C followed by cooling to room temperature. The interpretation of the Seebeck and Hall coefficients points to an enhancement in Hall mobility after annealing. In situ x-ray diffractometry shows the generation of an additional Te phase depending on temperature. This is also confirmed by energy-dispersive x-ray microanalysis and the corresponding mapping by scanning electron microscopy. It is presumed that the Te enrichment in a separate, locally well-defined phase is the reason for the improvement in the integral film transport properties.  相似文献   

17.
The first photosensitive n-ZnO:Al/CuPc/p-Cu(In,Ga)Se2 structures are produced by a vacuum sublimation of copper phthalocyanine onto the surface of thin p-Cu(In,Ga)Se2 films and a subsequent magnetron deposition of n-ZnO:Al films. The steady-state current-voltage characteristics of the resulting structures are studied. The charge-transport and photosensitivity mechanisms of the thin-film structures are discussed. The structures appear promising for the fabrication of wide-range (1.2–3.3 eV) thin-film photoelectric converters.  相似文献   

18.
We present the structural and optical properties of Zn1?xMgxO thin films studied using x-ray diffraction (XRD), extended x-ray absorption fine structure (EXAFS), and photoluminescence (PL) measurements. The Zn1?xMgxO films on sapphire [0001] substrates were fabricated with metal organic chemical vapor deposition (MOCVD). The XRD measurements showed that the Zn1?xMgxO films (x≤0.05) had a wurtzite structure without any MgO phase and were epitaxially grown along the c-axis of the Al2O3 substrate. The lattice constant of the Zn0.95Mg0.05O film shrank by 0.023 Å, compared with that of ZnO crystals. From the EXAFS measurements on the Zn1?xMgxO films at Zn K-edge, we found a substantial amount of distortion in the bond length of Zn-Zn pairs with a small amount of Mg substitution on the Zn site. The PL measurements showed a gradual increment of the main exciton transitions from 3.36 eV (x=0.0) to 3.57 eV (x=0.05) at 10 K. We also observed a strong deep-level emission near 2.3 eV from the specimen with x=0.05.  相似文献   

19.
Epitaxial PZT (001) thin films with a LaNiO3 bottom electrode were deposited by radio-frequency (RF) sputtering onto Si(001) single-crystal substrates with SrTiO3/TiN buffer layers. Pb(Zr0.2Ti0.8)O3 (PZT) samples were shown to consist of a single perovskite phase and to have an (001) orientation. The orientation relationship was determined to be PZT(001)[110]∥LaNiO3(001)[110]∥SrTiO3 (001)[110]∥TiN(001)[110]∥Si(001)[110]. Atomic force microscope (AFM) measurements showed the PZT films to have smooth surfaces with a roughness of 1.15 nm. The microstructure of the multilayer was studied using transmission electron microscopy (TEM). Electrical measurements were conducted using both Pt and LaNiO3 as top electrodes. The measured remanent polarization P r and coercive field E c of the PZT thin film with Pt top electrodes were 23 μC/cm2 and 75 kV/cm, and were 25 μC/cm2 and 60 kV/cm for the PZT film with LaNiO3 top electrodes. No obvious fatigue after 1010 switching cycles indicated good electrical endurance of the PZT films using LaNiO3 electrodes, compared with the PZT film with Pt top electrodes showing a significant polarization loss after 108 cycles. These PZT films with LaNiO3 electrodes could be potential recording media for probe-based high-density data storage.  相似文献   

20.
The performance of a microcombustor thermoelectric generator device based on a thermopile using p-type Bi0.3Sb1.7Te3 (BST) and n-type Pt films has been investigated. The BST films were prepared by two different methods—pulsed laser deposition (PLD) and sputter deposition—on Si3N4/SiO2 multilayers on Si substrate. The ceramic catalyst combustor was patterned on the thermopile end on a thin membrane fabricated by back-side bulk etching of the silicon substrate. At 138°C the thermoelectric power factors of the PLD and sputter-deposited films were 3.6 × 10−3 W/mK2 and 0.22 × 10−3 W/mK2, respectively. The power from the generator with the sputter-deposited film was 0.343 μW, which was superior to that of the device with the PLD film, which provided 0.1 μW, for combustion of a 200 sccm flow of 3 v/v% hydrogen in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号