首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘永强  严伟  赵通  赵慧周 《电子学报》2007,35(5):971-975
基于802.11 DCF机制的无线多跳网络性能深受MAC层的介质访问机制和上层路由机制相互作用的影响.本文面向自组织网络路径,给出了端-端最优吞吐量的模型以及计算其上下界的方法.本文的研究更加注重无线多跳网络的实际特性:分组调度可以任意方式调度,节点的载波侦听范围大于其传输范围.研究发现路径的端到端吞吐量与路径长度、分组发送速率和分组调度策略等因素密切相关.本文还分析了其他因素对端-端带宽的影响程度.本文从面向路径的分析模拟工作中得出的一些独特结论相信将有助于上层应用程序以及路由协议的研究.  相似文献   

2.
Multi-hop wireless networks employing random access protocols have been shown to incur large discrepancies in the throughputs achieved by the flows sharing the network. Indeed, flow throughputs can span orders of magnitude from near starvation to many times greater than the mean. In this paper, we address the foundations of this disparity. We show that the fundamental cause is not merely differences in the number of contending neighbors, but a generic coordination problem of CSMA-based random access in a multi-hop environment. We develop a new analytical model that incorporates this lack of coordination, identifies dominating and starving flows and accurately predicts per-flow throughput in a large-scale network. We then propose metrics that quantify throughput imbalances due to the MAC protocol operation. Our model and metrics provide a deeper understanding of the behavior of CSMA protocols in arbitrary topologies and can aid the design of effective protocol solutions to the starvation problem.   相似文献   

3.
In this paper, the maximum end-to-end throughput that can be achieved on a wireless multi-hop path is investigated analytically. The problem is modeled using the conflict graph, where each link in the multi-hop path is represented uniquely by a vertex in the conflict graph and two vertices are adjacent if and only if the associated links mutually interfere. Using the conflict graph and the linear programming formulations of the problem, we analyzed the maximum end-to-end throughput of a wireless multi-hop path a) in a simple scenario where nodes are optimally placed and each node can only interfere with the transmission of its adjacent nodes along the path, and b) in a more complicated scenario where nodes are randomly placed and each node can interfere with the transmission of any number of nearby nodes along the path in both a) an error free radio environment and b) an erroneous radio environment. The maximum end-to-end throughputs for each of the above four scenarios are obtained analytically. We show that the maximum achievable end-to-end throughput is determined by the throughput of its bottleneck clique, where a clique is a maximal set of mutually adjacent vertices in the associated conflict graph. Further our analysis suggests the optimum scheduling algorithm that can be used to achieve the maximum end-to-end throughput and that it is convenient to use the (maximal) independent sets as the basic blocks for the design of scheduling algorithms. The findings in this paper lay guidelines for the design of optimum scheduling algorithms. They can be used to design computationally efficient algorithms to determine the maximum throughput of a wireless multi-hop path and to design a scheduling algorithm to achieve that throughput.  相似文献   

4.
This paper presents a novel slotted ALOHA-based protocol for use in ad hoc networks where nodes are equipped with adaptive array smart antennas. The protocol relies on the ability of the antenna and DoA (Direction of Arrival) algorithms to identify the direction of transmitters and then beamform appropriately to maximize SINR (Signal to Interference and Noise Ratio) at the receiver. The performance of the protocol is evaluated using analytical modeling as well as detailed simulation in OPNET and Matlab where we demonstrate the benefits of using smart antennas. The impact of using different number of antenna elements is also studied for this environment.This work is funded by the NSF under grant ANIR-0125728.Harkirat Singh is a PhD candidate in Computer Science at Portland State University. He holds Master in Computer Science from Portland State University and B. E. in Electrical Engineering from Indian Institute of Technology (IIT), Roorkee, India. After his under graduation he joined Automation division of Siemens AG. He has research interests in next-generation TCP/IP networking, Mobile Wireless Computing, Ad-hoc networking, and low-power lost-cost sensor networks.Suresh Singh received his B. Tech. Degree in Computer Science from the Indian Institute of Technology (IIT) Kanpur in 1984 and his Ph.D. degree in 1990 from the University of Massachusetts at Amherst, both in Computer Science. His areas of research include energy-efficient protocols for wireless networking, sensor networks, cellular networking with a focus on 3g standards, and performance evaluation. His work has been funded by several federal agencies such as NSF, DARPA, and ONR and by a variety of industries. He is a member of the ACM and IEEE.  相似文献   

5.
Throughput Analysis of IEEE802.11 Multi-Hop Ad Hoc Networks   总被引:3,自引:0,他引:3  
In multi-hop ad hoc networks, stations may pump more traffic into the networks than can be supported, resulting in high packet-loss rate, re-routing instability and unfairness problems. This paper shows that controlling the offered load at the sources can eliminate these problems. To verify the simulation results, we set up a real 6-node multi-hop network. The experimental measurements confirm the existence of the optimal offered load. In addition, we provide an analysis to estimate the optimal offered load that maximizes the throughput of a multi-hop traffic flow. We believe this is a first paper in the literature to provide a quantitative analysis (as opposed to simulation) for the impact of hidden nodes and signal capture on sustainable throughput. The analysis is based on the observation that a large-scale 802.11 network with hidden nodes is a network in which the carrier-sensing capability breaks down partially. Its performance is therefore somewhere between that of a carrier-sensing network and that of an Aloha network. Indeed, our analytical closed-form solution has the appearance of the throughput equation of the Aloha network. Our approach allows one to identify whether the performance of an 802.11 network is hidden-node limited or spatial-reuse limited  相似文献   

6.
Efficient Cache Placement in Multi-Hop Wireless Networks   总被引:1,自引:0,他引:1  
In this paper, we address the problem of efficient cache placement in multi-hop wireless networks. We consider a network comprising a server with an interface to the wired network, and other nodes requiring access to the information stored at the server. In order to reduce access latency in such a communication environment, an effective strategy is caching the server information at some of the nodes distributed across the network. Caching, however, can imply a considerable overhead cost; for instance, disseminating information incurs additional energy as well as bandwidth burden. Since wireless systems are plagued by scarcity of available energy and bandwidth, we need to design caching strategies that optimally trade-off between overhead cost and access latency. We pose our problem as an integer linear program. We show that this problem is the same as a special case of the connected facility location problem, which is known to be NP-hard. We devise a polynomial time algorithm which provides a suboptimal solution. The proposed algorithm applies to any arbitrary network topology and can be implemented in a distributed and asynchronous manner. In the case of a tree topology, our algorithm gives the optimal solution. In the case of an arbitrary topology, it finds a feasible solution with an objective function value within a factor of 6 of the optimal value. This performance is very close to the best approximate solution known today, which is obtained in a centralized manner. We compare the performance of our algorithm against three candidate cache placement schemes, and show via extensive simulation that our algorithm consistently outperforms these alternative schemes.  相似文献   

7.
Correlated Link Shadow Fading in Multi-Hop Wireless Networks   总被引:2,自引:0,他引:2  
Accurate representation of the physical layer is required for analysis and simulation of multi-hop networking in sensor, ad hoc, and mesh networks. Radio links that are geographically proximate often experience similar environmental shadowing effects and thus have correlated shadowing. This paper presents and analyzes a non-site-specific statistical propagation model which accounts for the correlations that exist in shadow fading between links in multi-hop networks. We describe two measurement campaigns to measure a large number of multi-hop networks in an ensemble of environments. The measurements show statistically significant correlations among shadowing experienced on different links in the network, with correlation coefficients up to 0.33. Finally, we analyze multi-hop paths in three and four node networks using both correlated and independent shadowing models and show that independent shadowing models can underestimate the probability of route failure by a factor of two or greater.  相似文献   

8.
Geographic opportunistic routing (GOR) has shown throughput efficiency in coping with unreliable transmissions in multihop wireless networks. The basic idea behind opportunistic routing is to take advantage of the broadcast nature and spacial diversity of the wireless medium by involving multiple neighbors of the sender into the local forwarding, thus improve transmission reliability. The existing GOR schemes typically involve as many as available next-hop neighbors into the local forwarding, and give the nodes closer to the destination higher relay priorities. In this paper, we show that it is not always the optimal way to achieve the best throughput. We introduce a framework to analyze the one-hop throughput of GOR, provide a deeper insight into the trade-off between the benefit (packet advancement and transmission reliability) and cost (medium time delay) associated with the node collaboration, and propose a local metric named expected one-hop throughput (EOT) to balance the benefit and cost. We also identify an upper bound of EOT and its concavity, which indicates that even if the candidate coordination delay were negligible, the throughput gain would become marginal when the number of forwarding candidates increases. Based on the EOT, we also propose a local candidate selection and prioritization algorithm. Simulation results validate our analysis and show that the EOT metric leads to both better one-hop and path throughput than the corresponding pure GOR and geographic routing.  相似文献   

9.
In this paper, we propose a multi-hop auction-based bandwidth allocation mechanism to address the flow contention problem in wireless ad hoc networks. By modeling the problem as an iterative auction-based structure, it enables us to derive fair and efficient bandwidth allocation to each node on the basis of only local information. Further, a multi-hop flow coordination mechanism is then developed to optimize the network performance. Simulation results suggest that the proposed mechanism outperforms other approaches in terms of network throughput, bandwidth utilization, fairness, end-to-end delay, packet loss rate, and robustness.  相似文献   

10.
Delay Aware Link Scheduling for Multi-Hop TDMA Wireless Networks   总被引:1,自引:0,他引:1  
Time division multiple access (TDMA) based medium access control (MAC) protocols can provide QoS with guaranteed access to the wireless channel. However, in multi-hop wireless networks, these protocols may introduce scheduling delay if, on the same path, an outbound link on a router is scheduled to transmit before an inbound link on that router. The total scheduling delay can be quite large since it accumulates at every hop on a path. This paper presents a method that finds conflict-free TDMA schedules with minimum scheduling delay. We show that the scheduling delay can be interpreted as a cost, in terms of transmission order of the links, collected over a cycle in the conflict graph. We use this observation to formulate an optimization, which finds a transmission order with the min-max delay across a set of multiple paths. The min-max delay optimization is NP-complete since the transmission order of links is a vector of binary integer variables. We devise an algorithm that finds the transmission order with the minimum delay on overlay tree topologies and use it with a modified Bellman-Ford algorithm, to find minimum delay schedules in polynomial time. The simulation results in 802.16 mesh networks confirm that the proposed algorithm can find effective min-max delay schedules.  相似文献   

11.
In this paper, we analyze the impact of straight line routing in large homogeneous multi-hop wireless networks. We estimate the nodal load, which is defined as the number of packets served at a node, induced by straight line routing. For a given total offered load on the network, our analysis shows that the nodal load at each node is a function of the node's Voronoi cell, the node's location in the network, and the traffic pattern specified by the source and destination randomness and straight line routing. In the asymptotic regime, we show that each node's probability that the node serves a packet arriving to the network approaches the products of half the length of the Voronoi cell perimeter and the load density function that a packet goes through the node's location. The density function depends on the traffic pattern generation by straight line routing, and determines where the hot spot is created in the network. Hence, contrary to conventional wisdom, straight line routing can balance the load over the network, depending on the traffic patterns.  相似文献   

12.
The scheduling problem in multi-hop wireless networks has been extensively investigated. Although throughput optimal scheduling solutions have been developed in the literature, they are unsuitable for multi-hop wireless systems because they are usually centralized and have very high complexity. In this paper, we develop a random-access based scheduling scheme that utilizes local information. The important features of this scheme include constant-time complexity, distributed operations, and a provable performance guarantee. Analytical results show that it guarantees a larger fraction of the optimal throughput performance than the state-of-the-art. Through simulations with both single-hop and multi-hop traffics, we observe that the scheme provides high throughput, close to that of a well-known highly efficient centralized greedy solution called the greedy maximal scheduler.  相似文献   

13.
Opportunistic routing(OR) is an effective way to guarantee transmission reliability in wireless multi-hop networks.However,little research focuses on transmission efficiency.Thus,an analytical model based on open queuing network with Markov chains was proposed to evaluate the efficiency.By analyzing two typical ORs,we find duplicate transmission and collision avoidance overhead are the root reasons behind inefficiency.Therefore,a new scheme called dual priority cooperative opportunistic routing(DPCOR) was proposed.In DPCOR,forwarding candidates are configured with dual priority,which enables the network to classify forwarding candidates more effectively so as to reduce the back-off time and obtain more diversity gain.Theoretical analysis and simulation results show DPCOR achieves significant performance improvement with less time overhead compared with traditional routings and typical ORs.  相似文献   

14.
We investigate optimum rate assignment scheme maximizing network throughput on the downlink of a multirate CDMA wireless network. Systems employing orthogonal variable spreading factor (OVSF) codes as well as systems employing multiple codes have been studied. Our objective is to maximize the network throughput under constraints on total transmit power, total bandwidth and individual QoS requirements specified in terms of minimum rates. First, users are ordered based on their transmit energy per bit requirements to achieve the target received energy per bit to interference power spectral density ratio at the receivers. Based on the initial ordering, we prove that for systems employing multiple codes, greedy rate assignment yields maximum network throughput. For systems employing variable spreading codes, we show that greedy rate assignment is optimal if the minimum rate requirement of a user is larger than or equal to the minimum rate requirement of any other user with a larger transmit energy per bit requirement. Simulation results verify the superiority of the greedy algorithm under various system and channel assumptions  相似文献   

15.
Multiantenna or MIMO systems offer great potential for increasing the throughput of multihop wireless networks via spatial reuse and/or spatial multiplexing. This paper characterizes and analyzes the maximum achievable throughput in multihop, MIMO-equipped, wireless networks under three MIMO protocols, spatial reuse only (SRP), spatial multiplexing only (SMP), and spatial reuse and multiplexing (SRMP), each of which enhances the throughput, but via a different way of exploiting MIMO's capabilities. We show via extensive simulation that as the number of antennas increases, the maximum achievable throughput first rises and then flattens out asymptotically under SRP, while it increases "almost" linearly under SMP or SRMP. We also evaluate the effects of several network parameters on this achievable throughput, and show how throughput behaves under these effects.  相似文献   

16.
In this paper, we address the problem of joint channel assignment, link scheduling, and routing for throughput optimization in wireless networks with multiradios and multichannels. We mathematically formulate this problem by taking into account the interference, the number of available radios the set of usable channels, and other resource constraints at nodes. We also consider the possible combining of several consecutive channels into one so that a network interface card (NIC) can use the channel with larger range of frequencies and thus improve the channel capacity. Furthermore, we consider several interference models and assume a general yet practical network model in which two nodes may still not communicate directly even if one is within the transmission range of the other. We designed efficient algorithm for throughput (or fairness) optimization by finding flow routing, scheduling of transmissions, and dynamic channel assignment and combining. We show that the performance, fairness and throughput, achieved by our method is within a constant factor of the optimum. Our model also can deal with the situation when each node will charge a certain amount for relaying data to a neighboring node and each flow has a budget constraint. Our extensive evaluation shows that our algorithm can effectively exploit the number of channels and radios. In addition, it shows that combining multiple channels and assigning them to a single user at some time slots indeed increases the maximum throughput of the system compared to assigning a single channel.  相似文献   

17.
TCP Throughput Enhancement over Wireless Mesh Networks   总被引:1,自引:0,他引:1  
TCP is the predominant technology used on the Internet to support upper layer applications with reliable data transfer and congestion control services. Furthermore, it is expected that traditional TCP applications (e.g., Internet access) will continue to constitute the major traffic component during the initial deployment of wireless mesh networks. However, TCP is known for its poor throughput performance in wireless multihop transmission environments. For this article, we conducted simulations to examine the impact of two channel interference problems, the hidden terminal and exposed terminal, on TCP transmissions over wireless mesh networks. We also propose a multichannel assignment algorithm for constructing a wireless mesh network that satisfies the spatial channel reuse property and eliminates the hidden terminal problem. The simulation results demonstrate the effectiveness of the proposed approach in improving the performance of TCP in wireless multihop networks.  相似文献   

18.
19.
提出了一种同时利用机会路由和传统路由进行跨层优化的实时视频传输方法,通过将I帧和P帧分别利用不同路由进行传输,获得了比单独利用传统路由或机会路由更好的性能。  相似文献   

20.
In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communi-cating nodes. In this paper, we present a state-based channel capacity perception scheme to provide sta-tistical Quality-of-Service (QoS) guarantees under a medium or high traffic load for IEEE 802.11 wire-less multi-hop networks. The proposed scheme first perceives the state of the wireless link from the MAC retransmission information and extends this information to calculate the wireless channel capaci-ty, particularly under a saturated traffic load, on the basis of the interference among flows and the link state in the wireless multi-hop networks. Finally, the adaptive optimal control algorithm allocates a net-work resource and forwards the data packet by tak-ing into consideration the channel capacity deploy-ments in multi-terminal or multi-hop mesh net-works. Extensive computer simulations demonstrate that the proposed scheme can achieve better per-formance in terms of packet delivery ratio and net-work throughput compared to the existing capacity prediction schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号