首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The search for alternative energy sources is at the forefront of applied research. In this context, thermoelectricity, i.e., direct conversion of thermal into electrical energy, plays an important role, particularly for exploitation of waste heat. Materials for such applications should exhibit thermoelectric potential and mechanical stability. PbTe-based compounds include well-known n-type and p-type compounds for thermoelectric applications in the 50°C to 600°C temperature range. This paper is concerned with the mechanical and transport properties of p-type Pb0.5Sn0.5Te:Te and PbTe<Na> samples, both of which have a hole concentration of ∼1 × 1020 cm−3. The ZT values of PbTe<Na> were found to be higher than those of Pb0.5Sn0.5Te:Te, and they exhibited a maximal value of 0.8 compared with 0.5 for Pb0.5Sn0.5Te:Te at 450°C. However, the microhardness value of 49 HV found for Pb0.5Sn0.5Te:Te was closer to that of the mechanically stable n-type PbTe (30 HV) than to that of PbTe<Na> (71 HV). Thus, although lower ZT values were obtained, from a mechanical point of view Pb0.5Sn0.5Te:Te is preferable over PbTe<Na> for practical applications.  相似文献   

2.
The electrical properties of chromium-doped n-Pb1?x Ge x Te alloys (x = 0.02–0.13) have been studied. A decrease in the free-electron concentration and a metal-insulator transition are observed as the germanium content of alloys increases. This is due to the Fermi level pinning by the chromium impurity level and to the flow of electrons from the conduction band to the impurity level. The experimental data obtained are used to calculate, in terms of the two-band Kane dispersion law, the dependences of the electron concentration and Fermi energy on the germanium content in the alloy. The motion rate of the chromium-related level with respect to the conduction band bottom is determined and a model of variation of the electronic structure with the matrix composition is suggested.  相似文献   

3.
Liquid-phase epitaxy is used to fabricate Pb0.8Sn0.2Te films, undoped or doped with indium to different levels. The depth profiles of the carrier density and dopant concentration in the films are measured and examined. A uniform dopant concentration to a depth of 15 μm is obtained. Electrical-conduction inversion is observed at a temperature of 77.3 K as the doping level is varied. The liquid-phase epitaxial method is shown to be a more suitable technology for the reproducible manufacture of epitaxial films with a given carrier density, such as the ones used in terahertz detectors.  相似文献   

4.
Using the solution of the 2D Schrödinger equation, systematic features of distribution of charge carriers in the Si/Si1 ? x Ge x nanostructures and variations in the efficiency of radiative recombination when pyramidal 2D clusters are transformed into 3D dome clusters with increasing thickness of nanolayers are established. The effect of the composition of the layers on the efficiency of the elastic stress in the structure and, as a consequence, the variation in conduction bands and valence band of the Si1 ? x Ge x nanostructures is taken into account. On realization of the suggested kinetics model, which describes recombination processes in crystalline structures, saturation of radiation intensity with increasing the pump intensity caused by an increase in the contribution of the Auger recombination is observed. A decrease in the contribution of the nonradiative Auger recombination is attained by decreasing the injection rate of carriers into the clusters, and more precisely, by an increase in the cluster concentration and an increase in the rate of radiative recombination.  相似文献   

5.
Electron spin resonance in semimagnetic Cd1?xMnxTe (0<x<0.7) and Zn1?xMnxTe (0<x<0.53) compounds was studied at temperatures of 77 and 300 K. It is found that two types of paramagnetic centers exist in Zn1?xMnxTe, one of which is related to Mn2+ ions and the other is attributed to structural defects in the crystals.  相似文献   

6.
Mg2Si1−x Ge x compounds were prepared from pure elements by melting in tantalum crucibles. The reaction was conducted under an inert gas in a special laboratory setup. Samples for thermoelectric measurements were formed by hot pressing. Structure and phase composition of the obtained materials were investigated by x-ray diffraction (XRD). Morphology and chemical composition were examined by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS), respectively. Thermoelectric properties, i.e., the Seebeck coefficient, the electrical conductivity, and the thermal conductivity, were measured in the temperature range of 500 K to 900 K. The effect of Bi and Ag doping on the thermoelectric performance of Mg-Si-Ge ternary compounds was investigated. The electronic structures of binary compounds were calculated using the Korringa–Kohn–Rostoker (KKR) method. The effects of disorder, including Ge substitution and Bi or Ag doping, were accounted for in the KKR method with coherent potential approximation calculations. The thermoelectric properties of doped Mg2Si1−x Ge x are discussed with reference to computed density of states as well as the complex energy band structure.  相似文献   

7.
The effect of pressure on electrical properties of Ga-doped n-Pb1?xGexTe alloys (x=0.06, 0.08) is studied. The pressure dependence of the activation energy of a deep Ga impurity center is obtained. It is shown that the position of the Ga level with respect to the bottom of the conduction band is virtually unchanged under pressure. Anomalies are found in the temperature and pressure dependences of the resistivity; these anomalies are apparently associated with structural phase transitions from the cubic to the rhombohedral and orthorhombic phases, respectively. The results obtained are used to construct a diagram of the modification of the energy spectrum of charge carriers in the cubic phase of the alloys investigated under pressure.  相似文献   

8.
Cathodoluminescence from GaN x As1?x layers (0 ≤ x ≤ 0.03) was measured at photon energies ranging from the intrinsic absorption edge to 3 eV at room temperature. An additional emission band was visible in the visible range of the cathodoluminescence spectra. The intensity of this band is two orders of magnitude lower than the edge-emission intensity. The photon energy corresponding to the peak of this band and its FWHM are virtually independent of x and equal to ~2.1 and 0.6–0.7 eV, respectively. This emission is related to indirect optical transitions of electrons from the L 6c and Δ conduction-band minimums to the Γ15 valence-band maximum.  相似文献   

9.
n-Type CoSb2.875−x Ge0.125Te x (x = 0.125 to 0.275) compounds with different Te contents have been synthesized by a melt–quench–anneal–spark plasma sintering method, and the effects of Te content on the structure and thermoelectric properties have been investigated. The results show that all specimens exhibited n-type conduction characteristics. The solubility limit of Te in CoSb2.875−x Ge0.125Te x is found to be x = 0.25. The solubility of Te in CoSb3 is increased through charge compensation of the element Ge. The room-temperature carrier concentration N p of CoSb2.875−x Ge0.125Te x skutterudites increases with increasing Te content, and the compounds possess high power factors. The maximum power factor of 3.89 × 10−3 W m−1 K−2 was obtained at 720 K for the CoSb2.625Ge0.125Te0.25 compound. The thermal conductivity decreases dramatically with increasing Te content due to strong point defect scattering. The maximum value of the thermoelectric figure of merit ZT = 1.03 was obtained at 800 K for CoSb2.625Ge0.125Te0.25, benefiting from a lower thermal conductivity and a higher power factor. The figure of merit is competitive with values reported for single-filled skutterudites.  相似文献   

10.
The steady-state photocurrent in the fundamental absorption region of Pb1 ? x Sn x Te:In films is calculated with the field injection of electrons from the contact and their capture by traps in the bulk taken into account. The calculated and experimental current-voltage characteristics are compared at liquid-helium temperature. The represented experimental data on the dependence of the Hall effect on the injection level agree well with the considered model.  相似文献   

11.
A thin film of Ge-rich Ge x Si1−x on a (100) Si substrate was synthesized by ion implantation followed by thermal oxidation. Proper oxidation conditions were maintained to produce a film with Ge atomic content of more than 95%, confirmed by both high-resolution Rutherford backscattering spectrometry (RBS) and Raman spectroscopy. The strain state of the Ge-rich thin film is a function of its thickness, as determined by the implantation fluence. The use of Raman spectroscopy to monitor the composition and strain state of the Ge thin film formed is discussed.  相似文献   

12.
The temperature and concentration dependences of the electrical (conductivity σ, the Hall coefficient R), thermoelectric (thermovoltage α), and thermal (thermal conductivity K tot) characteristics of Sm x Pb1 − x Te alloys (x = 0, 0.02, 0.04, 0.08) are studied in the temperature range 100–500 K. Using the data for σ, α, and K tot, the thermoelectric power α2σ, figure of merit Z, and efficiency δ are calculated. It is established that at room-temperature α2σ and Z peak at the hole concentration p ≈ 1.2 × 1018 cm−3.  相似文献   

13.
A detailed study is presented of multicarrier transport properties in liquid-phase epitaxy (LPE)-grown n-type HgCdTe films using advanced mobility spectrum analysis techniques over the temperature range from 95 K to 300 K. Three separate electron species were identified that contribute to the total conduction, and the temperature-dependent characteristics of carrier concentration and mobility were extracted for each individual carrier species. Detailed analysis allows the three observed contributions to be assigned to carriers located in the bulk long-wave infrared (LWIR) absorbing layer, the wider-gap substrate/HgCdTe transition layer, and a surface accumulation layer. The activation energy of the dominant high-mobility LWIR bulk carrier concentration in the high temperature range gives a very good fit to the Hansen and Schmit expression for intrinsic carrier concentration in HgCdTe with a bandgap of 172 meV. The mobility of these bulk electrons follows the classic μ ~ T −3/2 dependence for the phonon scattering regime. The much lower sheet densities found for the other two, lower-mobility electron species show activation energies of the order of ~20 meV, and mobilities that are only weakly dependent on temperature and consistent with expected values for the wider-bandgap transition layer and a surface accumulation layer.  相似文献   

14.
Photoluminescence (PL) of Hg1 − x Cd x Te-based heterostructures grown by molecular-beam epitaxy (MBE) on GaAs and Si substrates has been studied. It is shown that a pronounced disruption of the long-range order in the crystal lattice is characteristic of structures of this kind. It is demonstrated that the observed disordering is mostly due to the nonequilibrium nature of MBE and can be partly eliminated by postgrowth thermal annealing. Low-temperature spectra of epitaxial layers and structures with wide potential wells are dominated by the recombination peak of an exciton localized in density-of-states tails; the energy of this peak is substantially lower than the energy gap. In quantum-well (QW) structures at low temperatures, the main PL peak is due to carrier recombination between QW levels and the energy of the emitted photon is strictly determined by the effective (with the QW levels taken into account) energy gap.  相似文献   

15.
The electrochemical behavior of nonaqueous dimethyl sulfoxide solutions of BiIII, TeIV, and SbIII was investigated using cyclic voltammetry. On this basis, Bi x Sb2−x Te y thermoelectric films were prepared by the potentiodynamic electrodeposition technique in nonaqueous dimethyl sulfoxide solution, and the composition, structure, morphology, and thermoelectric properties of the films were analyzed. Bi x Sb2−x Te y thermoelectric films prepared under different potential ranges all possessed a smooth morphology. After annealing treatment at 200°C under N2 protection for 4 h, all deposited films showed p-type semiconductor properties, and their resistances all decreased to 0.04 Ω to 0.05 Ω. The Bi0.49Sb1.53Te2.98 thermoelectric film, which most closely approaches the stoichiometry of Bi0.5Sb1.5Te3, possessed the highest Seebeck coefficient (85 μV/K) and can be obtained under potentials of −200 mV to −400 mV.  相似文献   

16.
The effect of pressure on electrical properties of the n-Pb1?x SnxTe alloy (x = 0.21) doped with gallium is studied. A decrease in the free-electron concentration with increasing temperature and an increase in this concentration with increasing pressure are observed; these observations indicate that the Fermi level is pinned at the resonant gallium level. The two-band Kane’s dispersion law and experimental data were used to calculate the pressure dependences of the electron concentration and Fermi level. A diagram of transformation of the charge-carrier energy spectrum in Pb1?x SnxTe:Ga subjected to pressure is suggested; the rate of the shift of the gallium resonant level in reference to the midgap under the effect of pressure is determined.  相似文献   

17.
The electrical characteristics of p-type Cd1?xZnxTe (x=0.05) and Cd1?xMnxTe (x=0.04) single crystals with a resistivity of 103–1010 Ω cm at 300 K are studied. The conductivity and its variation with temperature are interpreted on the basis of statistics of electrons and holes in a semiconductor with deep acceptor impurities (defects), with regard to their compensation by donors. The depth of acceptor levels and the degree of their compensation are determined. The problems of attaining near intrinsic conductivity close to intrinsic are discussed.  相似文献   

18.
Bi1?x Sb x solid solutions have attracted much attention as promising thermoelectric (TE) materials for cooling devices at temperatures below ~200 K and as unique model materials for solid-state science because of a high sensitivity of their band structure to changes in composition, temperature, pressure, etc. Earlier, we revealed a non-monotonic behavior of the concentration dependences of TE properties for polycrystalline Bi1?x Sb x solid solutions and attributed these anomalies to percolation effects in the solid solution, transition to a gapless state, and to a semimetal–semiconductor transition. The goal of the present work is to find out whether the non-monotonic behavior of the concentration dependences of TE properties is observed in the thin film state as well. The objects of the study are Bi1?x Sb x thin films with thicknesses in the range d = 250–300 nm prepared by thermal evaporation of Bi1?x Sb x crystals (x = 0–0.09) onto mica substrates. It was shown that the anomalies in the dependence of the TE properties on Bi1?x Sb x crystal composition are reproduced in thin films.  相似文献   

19.
Mercury cadmium telluride (HgCdTe, or MCT) with low n-type indium doping concentration offers a means for obtaining high performance infrared detectors. Characterizing carrier transport in materials with ultra low doping (ND?=?1014 cm?3 and lower), and multi-layer material structures designed for infrared detector devices, is particularly challenging using traditional methods. In this work, Hall effect measurements with a swept B-field were used in conjunction with a multi-carrier fitting procedure and Fourier-domain mobility spectrum analysis to analyze multi-layered MCT samples. Low temperature measurements (77 K) were able to identify multiple carrier species, including an epitaxial layer (x?=?0.2195) with n-type carrier concentration of n?=?1?×?1014 cm?3 and electron mobility of μ?=?280000 cm2/Vs. The extracted electron mobility matches or exceeds prior empirical models for MCT, illustrating the outstanding material quality achievable using current epitaxial growth methods, and motivating further study to revisit previously published material parameters for MCT carrier transport. The high material quality is further demonstrated via observation of the quantum Hall effect at low temperature (5 K and below).  相似文献   

20.
The low-temperature current-voltage characteristics of narrow-gap (Pb1?xSnxTe):In have been studied experimentally and calculated for a wide range of electric fields. It is shown that the obtained data are satisfactorily described in terms of a space-charge-limited current model in the presence of traps. The concentration and energy depth of the traps have been estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号