首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 164 毫秒
1.
从行波放大器设计理论出发,研制了一款基于低噪声GaAs赝配高电子迁移率晶体管(PHEMT)工艺设计的2~20 GHz单片微波集成电路(MMIC)宽带低噪声放大器。该款放大器由九级电路构成。为了进一步提高放大器的增益,采用了一个共源场效应管和一个共栅场效应管级联的拓扑结构,每级放大器采用自偏压技术实现单电源供电。测试结果表明,本款低噪声放大器在外加+5 V工作电压下,能够在2~20 GHz频率内实现小信号增益大于16 dB,增益平坦度小于±0.5 dB,输出P-1 dB大于14 dBm,噪声系数典型值为2.5 dB,输入和输出回波损耗均小于-15 dB,工作电流仅为63 mA,低噪声放大器芯片面积为3.1 mm×1.3 mm。  相似文献   

2.
基于0.25 μm GaAs赝高电子迁移晶体管(pHEMT)工艺,研制了一种1.0~2.4 GHz的放大衰减多功能芯片,该芯片具有低噪声、高线性度和增益可数控调节等特点。电路由第一级低噪声放大器、4位数控衰减器、第二级低噪声放大器依次级联构成,同时在片上集成了TTL驱动电路。为获得较大的增益和良好的线性度,两级低噪声放大器均采用共源共栅结构(Cascode)。测试结果表明,在1.0~2.4 GHz频带范围内,该芯片基态小信号增益约为36 dB,噪声系数小于1.8 dB,输出1 dB压缩点功率大于16 dBm,增益调节范围为15 dB,调节步进1 dB,衰减RMS误差小于0.3 dB,输入输出电压驻波比小于1.5。其中放大器采用单电源+5 V供电,静态电流小于110 mA,TTL驱动电路采用-5 V供电,静态功耗小于3 mA。整个芯片的尺寸为3.5 mm×1.5 mm×0.1 mm。  相似文献   

3.
基于90 nm GaAs赝配高电子迁移率晶体管(PHEMT)工艺设计并制备了一款2~18 GHz的超宽带低噪声放大器(LNA)单片微波集成电路(MMIC)。该款放大器具有两级共源共栅级联结构,通过负反馈实现了超宽带内的增益平坦设计。在共栅晶体管的栅极增加接地电容,提高了放大器的高频输出阻抗,进而拓宽了带宽,提高了高频增益,并降低了噪声。在片测试结果表明,在5 V单电源电压下,在2~18 GHz内该低噪声放大器小信号增益约为26.5 dB,增益平坦度小于±1 dB,1 dB压缩点输出功率大于13.5 dBm,噪声系数小于1.5 dB,输入、输出回波损耗均小于-10 dB,工作电流为100 mA,芯片面积为2 mm×1 mm。该超宽带低噪声放大器可应用于雷达接收机系统中,有利于接收机带宽、噪声系数和体积等的优化。  相似文献   

4.
采用分布式放大器设计原理,基于GaAs PHEMT低噪声工艺技术,研制了一款超宽带低噪声放大器单片电路。该款放大器选用分布式拓扑结构,由五级电路构成,为了进一步提高分布式放大器的增益,在每一级又采用了两个场效应晶体管(FET)串联结构。放大器采用了自偏压单电源供电,因为每级有两个FET串联,自偏压电路更为复杂,通过多个电阻分压的方式确定了每个FET的工作点。测试结果表明,该放大器在频率4~20 GHz内,增益大于14 dB,噪声系数小于3.0 dB,增益平坦度小于±1.0 dB,输入驻波比小于1.5∶1,输出驻波比小于1.8∶1,1 dB压缩点输出功率大于10 dBm。放大器的工作电压为8 V,电流约为50 mA,芯片面积为2.0 mm×2.0 mm。  相似文献   

5.
采用中国电子科技集团公司第十三研究所的GaAs PHEMT低噪声工艺,设计了一款2~4 GHz微波单片集成电路低噪声放大器(MMIC LNA)。该低噪声放大器采用两级级联的电路结构,第一级折中考虑了低噪声放大器的最佳噪声和最大增益,采用源极串联负反馈和输入匹配电路,实现噪声匹配和输入匹配。第二级采用串联、并联负反馈,提高电路的增益平坦度和稳定性。每一级采用自偏电路设计,实现单电源供电。MMIC芯片测试结果为:工作频率为2~4 GHz,噪声系数小于1.0 dB,增益大于27.5 dB,1 dB压缩点输出功率大于18 dBm,输入、输出回波损耗小于-10 dB,芯片面积为2.2 mm×1.2 mm。  相似文献   

6.
设计了L波段PIN限幅器芯片和低噪声放大器芯片,并将这两种芯片集成在载板上,组成小尺寸双平衡限幅低噪声放大器。低噪声放大器采用负反馈结构,降低噪声系数和改善增益平坦度。采用双平衡式结构,提高限幅器的功率容量,提高了1dB增益压缩点输出功率。对传统兰格桥结构作了改进,缩小了电路面积。该限幅低噪声放大器工作电压5V,电流40mA。测试结果显示,在频带1.2~1.4GHz内,噪声系数小于1.2dB,增益大于28dB,P1dB大于6dBm,能够承受脉冲功率150 W(脉宽200μs和占空比为20%)。体积为7.5mm×5.0mm×0.9mm。  相似文献   

7.
尤志刚  邓立科  杨小军  林先其 《通信技术》2011,44(2):149-150,153
介绍了宽带放大器的设计方法和负反馈技术。选用增益高、噪声小的高电子迁移率晶体管(HEMT)ATF54143,利用负反馈和宽带匹配技术,设计制作了一个高增益低噪声放大器,并借助于安捷伦公司的微波电路仿真软件ADS进行仿真和优化。测试表明,在50-300 MHz的频率范围内,低噪声放大器的增益大于22 dB,平坦度小于±0.3 dB,噪声系数小于1.25,输入驻波小于1.4,输出驻波小于1.3。  相似文献   

8.
基于0.15μm GaAs E-pHEMT工艺设计并制备了一款0.6~18.0 GHz的低噪声放大器单片微波集成电路。该放大器使用一级共源共栅结构,通过负反馈实现宽带的匹配设计。同时在共栅晶体管栅极增加到地电容,共源管和共栅管漏极增加峰化电感,以提高高频增益,扩展带宽,改善噪声。常温在片测试结果表明,在3.3 V单电源供电下,0.6~18.0 GHz频带内该款低噪声放大器噪声系数典型值1.5 dB,小信号增益约15 dB,增益平坦度小于±0.9 dB,输入、输出电压驻波比典型值分别为1.7和1.8,1 dB压缩点输出功率典型值14 dBm,功耗72.6 mW,芯片面积1.5 mm×1.2 mm。  相似文献   

9.
本文基于自主研发的InP基高电子迁移率晶体管工艺设计并制作了一款W波段单级低噪声放大单片毫米波集成电路。共源共栅拓扑结构和共面波导工艺保证了该低噪声放大器紧凑的面积和高的增益,其芯片面积为900 μm×975 μm,84 GHz-100 GHz频率范围内增益大于10 dB,95 GHz处小信号增益达到最大值为15.2 dB。根据调查对比,该单级放大电路芯片具有最高的单级增益和相对高的增益面积比。另外,该放大电路芯片在87.5 GHz处噪声系数为4.3 dB,88.8 GHz处饱和输出功率为8.03 dBm。该低噪声放大器芯片的成功研制对于构建一个W波段信号接收前端具有重要的借鉴意义。  相似文献   

10.
设计了一种小型化限幅低噪声放大器。采用Lange桥平衡结构,在实现低噪声的同时,得到较小的输入输出电压驻波比。采用集总参数和分布参数元件,实现了各级匹配。该小型化限幅低噪声放大器工作在R波段(2.1~2.5 GHz),噪声系数低于1 dB,输入输出驻波系数小于1.4,增益大于31 dB,带内增益波动只有±0.2 dB。通过SP2D开关实现两路输出,输出隔离度大于42 dB。  相似文献   

11.
2~8 GHz微波单片可变增益低噪声放大器   总被引:1,自引:0,他引:1  
报道了一种微波宽带 Ga As单片可变增益低噪声放大器芯片。该芯片采用南京电子器件研究所 76mm圆片 0 .5μm PHEMT标准工艺制作而成。工作频率范围为 2~ 8GHz,在零衰减时 ,整个带内增益大于 2 5d B,噪声系数最大为 3 .5 d B,增益平坦度小于± 0 .75 d B,输入驻波小于 2 .0 ,输出驻波小于 2 .5 ,输出功率大于 1 0d Bm。放大器增益可控大于 3 0 d B。实验发现 ,芯片具有良好的温度特性。该芯片面积为 3 .6mm× 2 .2 mm。  相似文献   

12.
基于90 nm栅长的InP高电子迁移率晶体管(HEMT)工艺,研制了一款工作于130 ~140 GHz的MMIC低噪声放大器(LNA).该款放大器采用三级级联的双电源拓扑结构,第一级电路在确保较低的输入回波损耗的同时优化了放大器的噪声,后两级则采用最大增益的匹配方式,保证了放大器具有良好的增益平坦度和较小的输出回波损耗.在片测试结果表明,在栅、漏极偏置电压分别为-0.25 V和3V的工作条件下,该放大器在130~ 140 GHz工作频带内噪声系数小于6.5 dB,增益为18 dB±1.5 dB,输入电压驻波比小于2:1,输出电压驻波比小于3:1.芯片面积为1.70 mm×1.10 mm.该低噪声放大器有望应用于D波段的收发系统中.  相似文献   

13.
设计、研制了一种工作在L波段的GaAs单片低噪声放大器。该放大器在HP-8510B网络分析仪和HP-8970B自动噪声仪上的测试结果为:1.1~1.5GHZ频段,NF≤2.0dB,G≥18dB,VSWR(in,out)≤2:1,增益起伏≤0.5dB;在1.5~2.0GHZ频段NF≤2.5dB,G≥18dB,VSWR(in,out)≤2:1,增益起伏≤±0.5dB。  相似文献   

14.
本文介绍了6~20GHz微波宽带低噪声、中功率放大器的研制工作。采用微波宽带匹配和CAD技术, 研制出了符合整机要求的放大器。主要性能指标: 工作频率6~20GHz, 1dB压缩输出功率≥18dBm , 增益≥28dB, 输入输出驻波比≤2.0∶1, 噪声系数≤4.0dB, 增益平坦度≤±2.0dB  相似文献   

15.
研制开发了12~18GHz宽带功率固态放大器。主要技术指标:工作频率为12~18GHz,增益GP≥25dB,输出功率PO≥400mW,输入输出驻波比VSWR≤2.5∶1,噪声系数Fn≤6dB。  相似文献   

16.
通过在两级级联放大器的后一级中采用负反馈网络来拓展放大器的工作频带,并在放大器的偏置网络中添加吸收回路来提高放大器的稳定性和改善其输入输出驻波比.利用ATF-54143设计了一款工作于1~4GHz的性能优良低噪声放大器(LNA).仿真结果显示,其增益G=21.3±0.35 dB,噪声系数NF≤1.2 dB,输入输出反射...  相似文献   

17.
1~7GHz全单片低噪声放大器   总被引:4,自引:1,他引:3  
一种性能优异的全单片宽带低噪声反馈放大器已研制成功。此两级放大器的特点是 ,性能稳定 ,频带宽 ,噪声低 ,增益高而平坦 ,可直接由 +5 V单电源供电 ,无需外加偏置电路 ,输入输出由 MIM电容隔直 ,使用方便。它由栅长为 0 .5 μm Ga As工艺制作而成 ,所有电路元器件皆集成在 3 .0 mm× 2 .0 mm的 Ga As衬底上。经测量 ,在频率 1~ 7GHz的范围内 ,放大器增益大于 2 0 d B,带内增益波动小于± 0 .75 d B,噪声系数 NF<2 .5d B,输入输出驻波 VSWR约 2 .0 ,1分贝压缩点输出功率大于 1 4d Bm。文中介绍了放大器的设计原理和工艺过程 ,并给出了测量结果。测量结果与设计符合得很好。最后值得指出的是 76mm Ga As圆片的成品率高 ,性能一致性好。  相似文献   

18.
报道了一个采用级联型单级分布式结构的宽带单片功率放大器的设计方法和研制结果。文中通过拓扑比较和人工传输线理论研究,分析出该功放设计的难点,并基于仿真实验,给出解决方案。最终研制的两级单片功放在6~18GHz频率范围内线性增益13.5dB,平坦度±1dB,输入输出驻波比均小于2。全频带上,饱和输出功率为300~450mW,功率附加效率大于15%。该宽带单片功率放大器在100mm GaAs MMIC工艺线上采用0.25μm功率pHEMT标准工艺制作,芯片尺寸为2.7mm×1.25mm×0.08mm。  相似文献   

19.
微波毫米波宽带单片低噪声放大器   总被引:1,自引:1,他引:0  
推导了反馈电路理论,利用0.25μmGaAs PHEMT工艺,研制了两种并联反馈单片低噪声放大器。第一种放大器的工作频带为6~18GHz,测得增益G≥21dB,带内增益波动ΔG≤±1.0dB,噪声系数NF典型值为2.0dB,输入驻波VSWRin≤1.5,输出驻波VSWRout≤2.0,1分贝压缩点输出功率P1dB≥11dBm。第二种放大器的工作频带为26~40GHz,测得增益G≥17dB,噪声系数NF约为2.0dB,输入、输出驻波VSWR≤2.5,1分贝压缩点输出功率P1dB≥10dBm。两种电路的测试结果验证了设计的正确性。  相似文献   

20.
2~12GHz GaAs单片行波放大器   总被引:1,自引:1,他引:0  
报道了一个全平面超宽带GaAs单片行波放大器的研究结果。该单片电路的核心部件是四个300μm栅宽的MESFET,整个电路拓扑结构简单,芯片面积为3.0mm×1.8mm。电路经优化设计后在2~12GHz范围内,小信号增益为5±1dB,输入输出电压驻波比≤1.75。上述频率范围内输出功率≥16dBm,噪声系数≤8dB。采用全离子注入、全平面工艺,均匀性、一致性良好。实验结果与设计预计值十分一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号