首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aligned, uniform fiber matrixes are highly desirable in numerous engineering and physical science applications. Here, modified electrospinning (ES) deposition substrates (paired and in parallel) are explored to achieve rapid preparation of multiple topographies. Three ES substrates with well‐defined geometries (rectangular, concave, and E‐shaped) were investigated (arranged in parallel) for their impact on fiber size, morphology, orientation, and cell behavior. The results indicate fiber alignment and orientation can be improved and modulated based on the substrate geometry. In addition, altering the interdistance space between various parallel substrates has a clear impact on fiber diameter size and alignment (random, aligned, and perpendicular orientation). Electric field simulations based on substrate geometries show greater probable regions of aligned electric field vectors and distribution, which indicates the most likely deposition attributes of electrospun PCL fibers. Fibrous PCL membranes were biocompatible, and cell growth and guidance were along the fiber path, with evidence of branching at intersecting fibers for multiaxial fibrous topographies. These findings show that the substrate geometry can be optimized to effectively assemble multiaxial layered and well‐aligned fibers in a controlled fashion, which is ideal to support several application developments dependent on fiber topography, integrity, and morphology. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44823.  相似文献   

2.
Our objective was to determine and optimize the significant parameters affecting mechanical properties and mean fiber diameter (MFD) of a novel GTR/GBR membrane composed of polycaprolactone (PCL) and chicken eggshell membrane (ESM). For this, we prepared electrospun membrane specimens (n = 16) with varying concentrations of PCL, ESM, nano-hydroxyapatite (HAp), and altered electrospinning parameters as generated by DOE++ software. After the determination of MFD and mechanical properties for all specimens, Taguchi orthogonal array L8 design was used to screen significant factors affecting the MFD and mechanical properties. PCL wt%, ESM wt%, HAp wt%, applied voltage (AV), flow rate (FR), and spinneret-collector distance (SCD) were the independent variables investigated. The response variables analyzed were MFD, tensile strength (TS), and elastic modulus. ANOVA outlined ESM wt%, HAp wt%, AV, FR, SCD, and an interactive effect between PCL wt% and AV to be the significant factors affecting modulus values of an electrospun PCL/ESM membrane (p < 0.05). Furthermore, concentrations of PCL and ESM were the significant factors affecting MFD (p < 0.05) and there were no significant factors affecting the TS values. Optimization using DOE++ software predicted that the maximal TS of 3.125 MPa, modulus of 278.168 MPa, and MFD of 882.75 nm could be achieved.  相似文献   

3.
To elucidate the effect of fiber structure on the properties of the electrospun gelatin/PCL hybrid membranes, three types of fibers with different structures, i.e., core‐shell, blend, and mixed fibers were fabricated. The crystallinity, wettability, swelling degree, and mechanical properties of the hybrid membranes were compared. It was found that the crystalline characteristics of PCL in the core‐shell fibers were different from the fibers fabricated by the other two methods. That is, the orientation degree of the PCL chains in the core‐shell fibers was higher than that in both blend and mixed fibers. The wettability of the hybrid membrane was dependent on both the composition and structure of the electrospun fibers. Blended fibers exhibited the highest hydrophobicity because of the enrichment of PCL at the fiber surface. Contrarily, the mixed fibers possessed the highest mechanical strength of 3–5.18 MPa. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Tough and elastic microfiber composites composed of an elastic polyurethane (Hydrothane) and a liquid crystalline polymer (Vectran) are fabricated via electrospinning. The composite fibers (HVC) are examined as a function of the mixing ratio of the polymers and evaluated on the bases of fiber formation, morphology, thermal properties, mechanical performance, and fiber alignment. The fiber diameters of the HVCs decrease as the content of Vectran increases. When the fibers are aligned via a rotating target, they have even smaller diameters and increased uniformity than when a static target is employed. Surprisingly, the aligned fibers’ mechanical properties are different than those of random orientation; the HVC fibers of random orientation display increases in strength, toughness, and elastic modulii when increasing amounts of Vectran are incorporated in the fibers. The aforementioned mechanical properties of the aligned fibers decrease somewhat as the content of Vectran is increased. Further, the durability of the aligned fibers is examined by extensional durability tests over ten cycles. The tests indicate that the HVC fibers are very durable and can function as tunable, tough, and elastic fibrous polymer scaffolds and have potential applications in high‐performance composites, polymeric filtration devices, and fibrous bioengineering materials.  相似文献   

5.
There is a need to develop high‐performance cellulose fibers as sustainable replacements for glass fibers, and as alternative precursors for carbon filaments. Traditional fiber spinning uses toxic solvents, but in this study, by using dimethyl sulfoxide (DMSO) as a co‐solvent with an ionic liquid, a novel high‐performance fiber with exceptional mechanical properties is produced. This involves a one‐step dissolution, and cost‐effective route to convert high concentrations of low molecular weight microcrystalline cellulose into high stiffness cellulose fibers. As the cellulose concentration increases from 20.8 to 23.6 wt%, strong optically anisotropic patterns appear for cellulose solutions, and the clearing temperature (T c) increases from ≈100 °C to above 105 °C. Highly aligned, stiff cellulose fibers are dry‐jet wet spun from 20.8 and 23.6 wt% cellulose/1‐ethyl‐3‐methylimidazolium diethyl phosphate/DMSO solutions, with a Young's modulus of up to ≈41 GPa. The significant alignment of cellulose chains along the fiber axis is confirmed by scanning electron microscopy, wide‐angle X‐ray diffraction, and powder X‐ray diffraction. This process presents a new route to convert high concentrations of low molecular weight cellulose into high stiffness fibers, while significantly reducing the processing time and cost.  相似文献   

6.
The activated carbon‐filled cellulose acetate (CA) hollow‐fiber membranes were prepared by using phase‐inverse technique and subsequently characterized by scanning electronic microscopy (SEM), atomic force microscopy (AFM), dynamic mechanical analysis (DMA), thermal mechanical analysis (TMA), and tensile analysis. The SEM observation demonstrated that the activated carbon‐filled CA hollow‐fiber membranes possess four‐layer structure, which consists of an external skin dense layer, an external void layer, a central sponge layer, and an internal skin dense layer, whereas the pure CA hollow‐fiber membranes lack the macrovoid layer. As the measurement of AFM, the roughness of both internal and external surface of activated carbon‐filled fibers is much higher than that of pure CA fiber, respectively. Higher Young's modulus and storage modulus of filled membranes indicate that the activated carbon particles were homogeneously dispersed in the polymeric matrix. To investigate the feasibility of the newly developed hollow‐fiber membranes for cell immobilization cells and to evaluate the inhibitory effect of phenol on immobilized cells, Pseudomonas putida ATCC 17484 was chosen to be immobilized on both pure CA and activated carbon‐filled hollow‐fiber membranes. Batch experiments for phenol biodegradation were carried out for both free suspension and immobilized cells at the initial concentration of 1500 mg/L phenol. In the case of free suspension, neither cell growth nor phenol degradation occurred to any measurable extent up to 35 h. We found that both pure CA fiber and activated carbon‐filled fiber immobilization systems can completely degrade the phenol. However, the biodegradation rate of activated carbon‐filled fiber system was higher than that of pure CA fiber system. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 695–707, 2000  相似文献   

7.
Triaxial electrospinning is a novel method for fabrication of multilayered nano and microsize fibers with desirable features for particular applications. Since the effect of solvent volatilities in each layer and relative polymer molecular weights on uniform encapsulation of the core polymer process is not well understood, we evaluated (i) the role of solvent volatilities, and (ii) molecular weights using cellulose acetate (CA, 30 kDa), polycaprolactone (PCL, 45 kDa and 80 kDa), mineral oil, and polyvinyl alcohol (PVA, 30 kDa and 100 kDa). Different solvent mixtures were evaluated based on the boiling points determined using a simulator. Inner mineral oil was selectively removed to form Hollow fibers. Analysis of chemical compositions using FT-IR and DSC revealed the presence of each component. 24-h viability of human umbilical vein endothelial cells indicated the formed fibers were not toxic. Scanning electron micrographs indicated the formation of triaxial structured fiber of outer hydrophobic PCL/CA/Hollow, PCL/PVA/Hollow and outer hydrophilic CA/PCL/Hollow fibers. Tensile tests (both wet and dry) revealed that PCL/CA/Hollow fibers had increased stiffness and load carrying capacity than CA/PCL/Hollow fibers. Successful fiber formation was dependent on ensuring that the outer shell formed first i.e., the relative solvent volatility of encapsulating core polymer to lower than that of the shell polymer.  相似文献   

8.
In this study, a thin layer with a thickness of about 120 μm of poly(caprolactone) (PCL) was fabricated by electrospinning method. Then, a fibrous nanocomposite composed of PCL/silk fibroin/strontium carbonate (PCL/SF/SrCO3) was electrospun on the prepared layer. Then, they were characterized. The mechanical properties, water uptake, degradation rate, wettability, porosity, and bioactivity of the electrospun membrane were scrutinized in vitro. Cytotoxicity of the samples was assessed by using osteoblast-like cells (SAOS-2) and L929 fibroblasts. Moreover, the cell adhesion, alkaline phosphatase (ALP) activity, and calcium deposition through alizarin red staining were conducted. Results revealed that the bilayer structure doubled the optimum mechanical properties and the addition of SrCO3 up to 15%–20% increased ALP activity, calcium deposition, and bioactivity. According to the results, the nanofibrous bilayer membrane containing 20 wt% SrCO3, 20 wt% SF, and 60 wt% PCL was chosen as the optimum sample. Therefore, this membrane could be applied in guided bone regeneration (GBR).  相似文献   

9.
Solution‐based near‐field electrospinning is employed to construct polymeric network membranes, made of orderly arranged and interconnected fibers. The narrow tip‐to‐nozzle separation of the direct‐writing process leads to solvent enriched fibers being deposited on the substrate, despite the use of a low boiling point solvent. This results in fibers with low cross‐sectional aspect ratio (flattened appearance), but providing a unique opportunity to produce interconnected fiber junctions through in situ, localized solvent etching by subsequent fiber overlays. Orthogonal networks of polycaprolactone (PCL) fibres, or PCL/collagen composite fibres, are fabricated, and then characterized by microscopy and spectroscopy techniques. This study presents a direct approach to strengthen interfiber junctions, and further the feasibility to interweave and interconnect fibers of different properties, leading to networked membranes with potentially tailorable functions for tissue engineering applications and beyond.  相似文献   

10.
Mechanical properties of poly(ε‐caprolactone) (PCL) and polylactic acid (PLA) blend reinforced with Dura and Tenera palm press fibers were studied. Dicumyl peroxide (DCP) was used as compatibilizer in the blend composites. Fourier transforms infrared spectrophotometer (FTIR) and field emission scanning electron microscope (FESEM) was used to study the effect of treatment on the fibers and fiber/matrix adhesion respectively. The uncompatibilized blend composites exhibited higher Young's modulus than the compatibilized blend composites. Impact strength of compatibilized blend composites of Tenera fibers (FM) increased by 161% at 10 wt% fiber load more than the uncompatibilized blend composites at same fiber load. The Dura fibers (FN) enhanced impact strength by 133% at 10 wt% fiber load. Tensile strength increased by 40% for compatibilized FM blend composites. In conclusion, it was observed that DCP incorporation resulted in good interfacial adhesion as revealed by the FESEM micrographs and evidenced in the improved mechanical properties. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

11.
Electrospinning provides an effective methodology to obtain high aspect ratio polymer fibers for biomimetic applications. In this article, we evaluate the effect of topology on adhesion between aligned fibers. Polycaprolactone is electrospun using two different setups: (i) a tip collector and (ii) a flat collector. The tip collector enables the fibers to self‐align. When a fiber reaches the tip collector, the next fiber is repelled by the charge they carry, forcing the fibers to deposit in a parallel arrangement. The flat collector allows the fibers to deposit at random. The adhesion between the fiber mats is measured using a T‐peel test. Adhesion strength (758.7 ± 211.7 kPa) changes marginally with the peeling rate and applied pressure on the membranes. Aligned fibers exhibit higher adhesion strength between the membranes in comparison to randomly oriented nonwovens (613.1 ± 79.9 kPa). The estimated Johnson–Kendall–Roberts contact energy (83.1 ± 32.5 mJ/m2) is consistent with the range of van der Waals adhesion forces. This work shows how the adhesion between two polymer membranes can be modulated by surface topology, based on a T‐peel testing setup. POLYM. ENG. SCI., 53:2219–2227, 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
Well‐aligned and highly ordered architectures are always required in many fields, such as tissue engineering, electronics, and preparation of composite materials. In this study, electrospun mats with well‐aligned fibers and various fiber assemblies were successfully fabricated by electrospinning of poly(vinylbutyral) (PVB)/inorganic salt solution under the optimal salt condition. Then, the effect of inorganic salts on the degree of electrospun fiber alignment was comprehensively investigated, and the results indicated that the viscosity and conductivity of the solutions were the key factors influencing the degree of fiber alignment. It was expected that this simple and feasible method could be helpful for the fabrication of the well‐aligned electrospun fibers and various fiber assemblies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Electrospun fiber materials are of scientific interest for use in multiple application areas. Charged fiber structures show enhanced properties as desired for some of these applications. One factor influencing the charge on the fiber structure that has not been explored is fiber alignment. Electrospun fiber structures, such as membranes, typically consist of randomly oriented fibers. Structural properties of the membranes such as mechanical strength are known to be affected by the random orientation of the fibers. It is suspected that fiber orientation may also affect the charge capacity of charged fiber structures. A few approaches to form electrospun yarns have been reported. Some of these approaches can also cause fibers to preferentially align along the yarn axis instead of assembling into a random structure. In this work, a rotating metal cone was used to collect Poly(vinylidene fluoride) electrospun fibers from which stretched yarns were drawn and twisted into yarns. The alignment of the fibers in the yarns was controllable to a degree that allowed exploration of the effect of alignment on charge. Long continuous oriented or random yarns of relatively uniform thickness were produced at a rate of about 10 m/h. The yarns were polarized by methods of heating, stretching, and poling. The results show that the fiber yarn formation process endows more charges to the fibers compared to the normal fiber membrane electrospinning and post polarization. This provides a facile route for the preparation of enhanced charge-functionalized fiber structures for a wide range of applications.  相似文献   

14.
Poly(L‐lactic acid) (PLLA)‐aligned fibers with diameters in the nano‐ to micrometer size scale are successfully prepared using the electrospinning technique from two types of solutions, different material parameters and working conditions. The fiber quality is evaluated using scanning electron microscopy (SEM) to judge fiber diameter, diameter uniformity, orientation, and appearance of defects or beads. The smoothest fibers, most uniform in diameter and defect free, were found to be produced from 10% w/v chloroform/dimethylformamide solution using an accelerating voltage from 10–20 kV. Addition of 1.0% multiwalled carbon nanotubes (MWCNT) into the electrospinning solution decreases fiber diameter, improves diameter uniformity, and slightly increases molecular chain alignment. The fibers were cold crystallized at 120°C and compared with their as‐spun counterparts. The influences of the crystalline phase and/or MWCNT addition were examined using fiber shrinkage, temperature‐modulated calorimetry, X‐ray diffraction, and dynamic mechanical analysis. Crystallization increases the glass transition temperature, Tg, slightly, but decreases the overall fiber alignment through shrinkage‐induced buckling of the fibers when heated above Tg. MWCNT addition has little impact on Tg, but significantly increases the orientation of crystallites. MWCNT addition slightly reduces the dynamic modulus, whereas crystallization increases the modulus in both neat‐ and MWCNT‐containing fibers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41779.  相似文献   

15.
Paperboard laminates coated with two grades of poly(ε‐caprolactone) (PCL), poly(hydroxy butyrate‐co‐valerate) (PHBV) or a liquid crystalline copolyester (LCP) were prepared by compression molding, and the influence of the processing conditions and polymer content of the laminate on the laminate properties was studied. Ligno‐cellulose fiber/polymer blends were prepared from wet pulps and PCL and PHBV. The morphology, water vapor transmission rates, creasability, curl and twist and mechanical properties of the laminates and blends were studied. LCP and slowly cooled high molar mass PCL laminated paperboards showed the best creasing properties and the paperboards that were penetrated by the polymer showed the smallest degree of curl and twist. Extensive penetration occurred during compression molding of the paperboard with the low molar mass PCL at all temperatures and with PHBV and LCP at the higher molding temperatures. The water vapor transmission rates ranged from 1 to 300 times that of polyethylene depending on the polymer used and on the thermal history. In the case of blends, competitive properties were obtained only in those with a high polymer content. The laminate stiffness decreased and the strength increased in two polymer concentration regions, at ~20 wt% due to fiber‐fiber separation and at ~60 wt% due to phase inversion.  相似文献   

16.
Polymer blending is one of the most effective methods for providing new, desirable biocomposites for tissue‐engineering applications. In this study, electrospun poly(L ‐lactide)/poly(ε‐caprolactone) (PLLA/PCL) blend fibrous membranes with defect‐free morphology and uniform diameter were optimally prepared by a 1 : 1 ratio of PLLA/PCL blend under a solution concentration of 10 wt %, an applied voltage of 20 kV, and a tip‐to‐collector distance of 15 cm. The fibrous membranes also showed a porous structure and high ductility. Because of the rapid solidification of polymer solution during electrospinning, the crystallinity of electrospun PLLA/PCL blend fibers was much lower than that of the PLLA/PCL blend cast film. To obtain an initial understanding of biocompatibility, adipose‐derived stem cells (ADSCs) were used as seed cells to assess the cellular response, including morphology, proliferation, viability, attachment, and multilineage differentiation on the PLLA/PCL blend fibrous scaffold. Because of the good biocompatibility and nontoxic effect on ADSCs, the PLLA/PCL blend electrospun fibrous membrane provided a high‐performance scaffold for feasible application in tissue engineering using ADSCs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
We reported the mechanical properties of the polyelectrolyte multilayer nano‐coated electrospun fiber mats with different number of layers. Multilayer nano‐coatings composed of layers of PSS and PAH were successfully deposited onto electrospun nylon 6 fibers via layer‐by‐layer self‐assembly. Compared with pure nylon 6 fibers, the morphology of polyelectrolyte multilayer coated nylon 6 fibers was uniform and smooth. The mechanical properties of polyelectrolyte multilayer coated random and aligned nylon 6 fibers were remarkably enhanced. Moreover, it was found that the higher degree of alignment resulted in higher tensile strength, suggesting the combined effects of the alignment, the surface nanocoating and the formation of internal networks of polyelectrolytes on nylone 6 fibers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Electrospinning of a poly(ε‐caprolactone) (PCL)/lactic acid (LA) blend was investigated to fabricate electrospun PCL fibers with improved biodegradability and biocompatibility for biomedical applications. Simple blending of PCL solution with various amounts of LA was used for electrospinning, and the physicochemical properties of the as‐fabricated mat were evaluated using various techniques. Scanning electron microscopy showed that fiber diameter decreased with increasing amount of LA. Fourier transform infrared spectroscopy and thermogravimetric analysis also revealed that LA was successfully incorporated in PCL fibers. The presence of LA can accelerate the biodegradation of PCL fibers and enhance the hydrophilicity of a membrane. The adhesion, viability and proliferation properties of osteoblast cells on the PCL/LA composite fibers were analyzed using in vitro cell compatibility tests which showed that LA can increase the cell compatibility of PCL fibers. Additionally, subsequent conversion of LA into calcium lactate by neutralization with calcium base can provide Ca2+ ions on the fiber surface to promote the nucleation of CaPO4 particles. © 2013 Society of Chemical Industry  相似文献   

19.
Melt‐spinning and stretching (MS‐S) method was proposed for preparing poly(vinylidene fluoride) (PVDF) hollow fiber membranes with excellent mechanical properties. The morphology and properties of PVDF fibers and membranes were investigated by small angle X‐ray scattering (SAXS), differential scanning calorimeter (DSC), field emission scanning electron microscope, mercury porosimeter, and tensile experiment. SAXS results indicated that the stacked lamellar structure aligned normal to the fiber axis was separated and deformed when the fibers were strained, and the long period of the strained fibers increased accordingly. Factors affecting the membrane properties were mainly spin‐draw ratio, annealing temperature, time, and stretching rate. Experimental results showed that the average pore size, porosity, and N2 permeation of the membranes all increased with the increasing spin‐draw ratios and annealing temperatures. Annealing the nascent PVDF hollow fibers at 145°C for 12 h was suitable for attaining membranes with good performance. In addition, the amount and size of the micropores of the membrane increased obviously with stretching rate. Tensile experiment indicated PVDF hollow fiber membranes made by MS‐S process had excellent mechanical properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

20.
In this study, electrospinning of sulfonated poly(ether ether ketone) (SPEEK) at different degrees of sulfonation (DS) was investigated. The polymer solution concentration of 22 wt% was obtained to collect smooth fiber in nanoscale range of 112 to 131 nm at various conditions. SEM observations of SPEEK nanofibers showed the decrease of diameter with increasing DS from 74% to 81%, mainly due to the increase of electrical conductivity of polymer solution at higher DS. The increase of collecting speed from 20 to 305 m/min decreased the diameter of nanofibers slightly and improved their alignment. The presence of SO3H groups in collected nanofibers was demonstrated with FT‐IR analysis. WAXD patterns of SPEEK nanofibers indicated featureless amorphous peak with no crystalline regions that was broaden at higher DS and aligned nanofibers. The electrochemical impedance spectroscopy of SPEEK nanofibers showed the through‐plane proton conductivity of fully hydrated nanofibrous membranes measured at room temperature were improved with DS. The proton conductivity of randomly oriented and aligned nanofibers were measured from 0.0098 to 0.0722 S/cm and from 0.0592 to 0.0907 S/cm, respectively. Aligned nanofibers exhibited more proton conductivity than randomly collected nanofibers. POLYM. ENG. SCI., 57:789–796, 2017. © 2016 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号