首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, highly transparent, robust, and superhydrophilic polyethylene glycol tert‐octylphenyl ether nonionic surfactant/epoxy (Triton X‐100/epoxy, TXE) composite coatings are successfully prepared with a facile, one‐step drop‐casting method by mixing Triton X‐100 with an epoxy resin and an amine curing agent. The hydrogen bond reaction between the hydroxyl group of Triton X‐100 and the ether group of the epoxy resin improves the compatibility and reduces the glass transition temperature (Tg) of the TXE composite coatings. The free Triton X‐100 surfactant easily accumulates on the surface of the TXE composite coatings, which improves the hydrophilicity of the TXE composite coatings. The TXE composite coatings are self‐healable because of their low Tg and the migration of Triton X‐100 small molecule surfactant. Any damage arising from denting, cutting, or wiping by tetrahydrofuran can be healed, and the composite coating can regain its superhydrophilic properties through a heating process. The TXE composite coatings demonstrate excellent acid, alkali, salt, high temperature, and ultrasonic‐resistant properties. This facile preparation technique has the potential to be applied in the scalable fabrication of multifunctional coatings in anti‐fogging, oil–water separation, and optical–electric devices.  相似文献   

2.
3.
Epoxy coatings which can be healed via photothermal effect from focused sunlight are reported. The diamine of m‐xylylenediamine (MXDA) and monoamine of 4‐(heptadecafluorooctyl)aniline (HFOA) are reacted into the diglycidylether of bisphenol A (DGEBA) network. Via gradual replacement of MXDA with HFOA, the glass transition temperature and crosslinking density of the epoxy network are tuned to achieve the thermally induced healing based on chain diffusion and reentanglement. Aniline black (AB) with well absorptivity for sunlight is used subsequently as the organic photothermal compound, transferring the thermally induced healing into a sunlight responsive one. A common handheld magnifier, which can focus natural sunlight to the required power density (0.6–0.9 W cm−1), is used to successfully heal one cracked coating in outdoor circumstance. This study provides a potential approach to achieve the convenient, precise, and timely healing for outdoor epoxy coatings.

  相似文献   


4.
In biological system, early detection and treatment at the same moment is highly required. For synthetic materials, it is demanding to develop materials that possess self‐reporting of early damage and self‐healing simultaneously. This dual function is achieved in this work by introducing an intelligent pH‐responsive coatings based on poly(divinylbenzene)‐graft‐poly(divinylbenzene‐co‐methacrylic acid) (PDVB‐graft‐P(DVB‐co‐AA)) core–shell microspheres as smart components of the polymer coatings for corrosion protection. The key component, synthesized PDVB‐graft‐P(DVB‐co‐AA) core–shell microspheres are porous and pH responsive. The porosity allows for encapsulation of the corrosion inhibitor of benzotriazole and the fluorescent probe, coumarin. Both loading capacities can be up to about 15 wt%. The polymeric coatings doped with the synthesized microspheres can adapt immediately to the varied variation in pH value from the electrochemical corrosion reaction and release active molecules on demand onto the damaged cracks of the coatings on metal surfaces. It leads simultaneously to the dual functions of self‐healing and self‐reporting. The corrosion area can be self‐reported in 6 h, while the substrate can be protected at least for 1 month in 3.5 wt% NaCl solution. These pH‐responsive materials with self‐reporting and self‐healing dual functions are highly expected to have a bright future due to their smart, long‐lasting, recyclable, and multifunctional properties.  相似文献   

5.
Most of elastomers for fabrication of comfortable epidermal devices and smart actuators produce responsive signals by the stimuli‐induced deformation. Herein, a dynamic visualization of external stimuli rather than the deformation through synthesis of a self‐healing poly(dimethylsiloxane) (PDMS)‐based elastomer doped with aggregation‐induced emission (AIE) molecules is reported. The self‐healing PDMS‐based elastomer is designed and synthesized through molecule integration of reversible multi‐strength H‐bonds and permanent covalent crosslink sites. The adjustment of the weight ratio of elastic cross‐linker offers tunable mechanical properties of the resultant elastomer. After doping such an elastomer with AIE molecules of 1,1,2,2‐tetrakis(4‐nitrophenyl)ethane, the elastomer composite displays strong on–off fluorescence depending upon mechanical damage and temperatures, which can be used to detect the breaking and self‐healing performances, as well as the temperature change. The strategy described here provides another way to develop smart polymeric elastomers for practical applications.  相似文献   

6.
Intelligent materials possess the function of self‐judgment and self‐optimization while sensing external stimuli such as stress, temperature, moisture, pH, electric or magnetic fields, or light. Besides, they often require self‐healing—the ability to repair damage spontaneously—or shape‐memory—the ability to return from a deformed state to their original shape induced by an external stimulus. Introducing such intelligence into superconducting (SC) devices is highly desirable to meet the critical requirement of maintenance‐free performance. Here, self‐healing and shape‐memory functions are realized in liquid metal based SC devices using smart packaging polymers. Without deteriorating their superconductivity, the SC devices can repair themselves by simply raising the temperature, without any other treatment. Beyond the specific functions achieved here, this work sheds new light on future SC devices with advanced functions such as self‐diagnosis, self‐adjusting, and sensing.  相似文献   

7.
8.
The efficient integration of reversible polymer networks into acrylate‐based polymeric materials is of peculiar interest for the development of coatings that combine high transparency with self‐healing ability. In this work, reversible networks are obtained by reacting a series of linear copolymers of furfuryl methacrylate with aliphatic bismaleimides through Diels–Alder (DA) reaction between furan and maleimide moieties. Owing to dynamic crosslinking, the obtained coatings exhibit thermal reversibility, as determined by differential scanning calorimetry and dissolution experiments. Furthermore, upon heating over the retro‐DA temperature, an excellent recovery of mechanically induced surface damages proves successful thermal remendability. Compared to previous reports on DA‐based acrylate networks, the presented thermally responsive coatings exhibit outstanding transparency and absence of color, as a result of an accurate choice of suitable monomeric precursors. In addition, a pronounced hydrophobic behavior and excellent adhesive properties make the proposed material particularly suitable for optical applications.  相似文献   

9.
A self‐healing polysaccharide hydrogel based on dynamic covalent enamine bonds has been prepared with a facile, cost‐effective, and eco‐friendly way. The polysaccharide hydrogel is obtained by mixing cellulose acetoacetate (CAA) aqueous solution with chitosan aqueous solution under room temperature. CAA is synthesized by reaction of cellulose with tert‐butyl acetoacetate (t‐BAA) in ionic liquid 1‐allyl‐3‐methylimidazolium chloride (AMIMCl). The structure and properties of CAA are characterized by FT‐IR, NMR, and solubility measurements. The results demonstrate that CAA possesses water solubility with a degree of substitution (DS) about 0.58–1.11. The hydrogel shows an excellent self‐healing behavior without other external stimuli and good stability under physiological conditions. Furthermore, the polysaccharide hydrogel exhibits pH responsive properties.

  相似文献   


10.
Hydrogels, especially the ones with self‐recovery and adhesive performances, have attracted more and more attention owing to their wide practical potential in the biomedical field involving cell delivery, wound filling, and tissue engineering. Tannic acid (TA), a nature‐derived gallol‐rich polyphenol, exhibits not only unique chelating properties with transition metal cations but also desirable anti‐oxidation properties and strong bonding capability to proteins and gelatin. Thus, taking advantage of the versatility of TA, a one‐pot method is proposed herein to produce TA‐modified gelatin hydrogels with the aid of NaIO4 under basic conditions. By changing the amount of NaIO4 used, the obtained hydrogels are covalently cross‐linked to different degrees and consequently exhibit diversity in their self‐healing and adhesive properties. The gelling time, viscoelasticity, and morphology of hydrogels are investigated, and when the feed molar ratio of NaIO4 to TA is adjusted to 15:1, the fabricated hydrogel shows optimum self‐healing efficiency of 73% and adhesive strength of 36 kPa. Additionally, considering the completely natural origin of TA and gelatin, this study offers an original way for the fabrication of biocompatible self‐healing and adhesive materials.  相似文献   

11.
Hyperbranched PEI and urea‐functionalized PEI amphiphiles are employed as additives in NBR compounding. Polarity design governing phase separation, PEI migration and PEI‐mediated self‐healing of NBR is demonstrated. The compatibility of PEI and NBR decreases with increasing molecular weight of PEI and with decreasing degree of substitution. Microphase‐separated NBR/PEI blends are prepared with varying PEI molecular architectures. Thermal self‐healing of NBR/PEI is monitored by applying tests combining crack initiation with annealing under compression. All PEI additives show complete crack‐healing upon annealing at 100 °C for 12 h. In contrast to neat NBR, the NBR/PEI‐2 blend afforded a self‐healing efficiency of 44% after cutting and re‐joining by compression and annealing.

  相似文献   


12.
13.
A transparent self‐healing coating incorporating chambers and capsules capable of preventing the propagation of cracks in glass is presented. The main features simultaneously satisfy the requirements of high transmittance (≈90% in the visible region) and the ability to heal random and large‐area cracks in coated‐glass materials (up to 6 cm long, 20 µm wide, and 1 mm deep per chamber). Additionally, the polymerized hydrogel used as the healing agent can stop crack propagation because of its high mechanical strength and good adhesion to glass. Remarkably, the healed glass can withstand a force approximately four times greater than what can be withstood by the unhealed glass after cracking.  相似文献   

14.
A hybrid chemically and physically linked polyacrylamide (PAM)/carboxymethyl hydroxypropyl guar gum (CMHPG) system is prepared via a fast and controllable one‐pot strategy. Due to the synergetic effect of the non‐covalent interactions between chains, these systems show improved, balanced mechanical properties. The apparent morphology, storage modulus G′, and loss modulus G″ show that these systems have rapid and almost full recovery ability (the self‐healing efficiency can reach 95%) with several hydrogen‐bonding interactions between two networks. This self‐healing property can cover the shortage of G′, G″, and viscosity loss at high shear force, which will help the system keep enough viscosity to create fractures or carry proppants during the whole fracturing process. Meanwhile, the self‐healing fracturing fluid can be broken easily and flow back to surface with little damage to the fracture conductivity, indicating great potential in unconventional reservoir which is sensitive to the fracturing fluid damage.  相似文献   

15.
High adhesive strengths are essential in self‐healing polymers. In these novel materials, healing is triggered by crack propagation through embedded microcapsules in an epoxy matrix, which then release the liquid healing agent into the crack plane. Subsequent exposure of the healing agent to an embedded chemical initiator triggers ring‐opening metathesis polymerization (ROMP), bonding the crack faces closed. In order to improve self‐healing efficiencies in these systems, it is necessary to improve the adhesion of the polymerized healing agent with the epoxy matrix. In this study, the adhesive shear strength between different norbornene‐based healing agents and an amine‐cured epoxy resin was evaluated using single lap shear specimens. The healing agents tested include endo‐dicyclopentadiene (DCPD), 5‐ethylidene‐2‐norbornene (ENB) and DCPD/ENB blends. 5‐Norbornene‐2‐methanol (NBM) and 5‐norbornene‐2‐exo,3‐exo‐dimethanol (NBDM) were used as adhesion promoters because they contain hydroxyl groups which can form hydrogen bonds with the amine‐cured epoxy adherend. A custom synthesized norbornene‐based crosslinking agent was also added to improve the adhesion of the polymerized ENB by increasing its crosslink density after ROMP. The effects of catalyst loading, polymerization time and cure temperature on the adhesive bond strength are studied in detail.

  相似文献   


16.
A self‐healable hydrogel with recoverable self‐healing and mechanical properties is reported. The hydrogel (coded as ACSH) crosslinked by Schiff base linkage contains two polysaccharides of acrylamide‐modified chitosan (AMCS) and oxidized alginate (ADA). Self‐healing and mechanical properties are heavily influenced by the crosslinking time. The hydrogel crosslinked for 2 h possesses better mechanical and self‐healing properties than hydrogel crosslinked for 24 h. Macroscopic test shows that hydrogel without self‐healing ability can recover the self‐repair and mechanical properties by adjusting the pHs. The recovery of self‐healing and mechanical properties relies on the pH sensitivity of the Schiff base linkage. Adjusting the pH to acid, the Schiff base linkage becomes unstable and breaks. Regulating the pH to neutral, reconstruction of Schiff base linkage leads to recovery of the self‐repair and mechanical properties. The recoverable self‐healing property can be cycled once breakage and reconstruction of the Schiff base linkage can be conducted. In addition, this study demonstrates that the hydrogel can be remodeled into different shapes based on self‐healing property of the hydrogel. It is anticipated that this self‐healable hydrogel with recoverable self‐healing and mechanical properties may open a new way to investigate self‐healing hydrogel and find potential applications in different biomedical fields.  相似文献   

17.
Physical patterns were created on hydrated PSS/PDADMAC multilayers without using external force. A typical process was to put a PDMS stamp onto the wet and swollen multilayers, which were then put into an oven and maintained for a period of time to micromold the multilayers. The influence of molding temperature and time, multilayer thickness, solvent quality, and multilayer compositions on pattern formation were elucidated. Evolution of the patterns from double lines, double strips, and meniscus‐shaped ridges to high ridges was observed under all conditions, revealing that this is a universal principle for this process. Finally, patterns on PAA/PAH and PSS/PAH multilayers were also prepared at the optimal conditions, highlighting its wide generality on the multilayer patterning.

  相似文献   


18.
An injectable and self‐healing multifluorescent hydrogel system based on engineered coiled‐coil polypeptide and CdSe@ZnS quantum dots (QDs) is developed. The mechanical properties of the PC10A‐QD hydrogel are able to be tuned by changing the concentrations of PC10A and QDs. The G′ of PC10A hydrogel increases from 800 to 1000 Pa by doping 6 nm oil‐soluble CdSe@ZnS QDs. The PC10A‐QD hydrogel can easily pass through a 26‐gauge needle without clogging. In addition, through interfacial assembly of PC10A polypeptide on the surface of the PC10A‐QD hydrogel, each of these hydrogel can self‐assemble into a multifluorescent hydrogel. This approach for preparation of injectable self‐healing multifluorescent hydrogels is expected to apply in biomedicine.  相似文献   

19.
Flexible and stretchable conducting composites that can sense stress or strain are needed for several emerging fields including human motion detection and personalized health monitoring. Silver nanowires (AgNWs) have already been used as conductive networks. However, once a traditional polymer is broken, the conductive network is subsequently destroyed. Integrating high pressure sensitivity and repeatable self‐healing capability into flexible strain sensors represents new advances for high performance strain sensing. Herein, superflexible 3D architectures are fabricated by sandwiching a layer of AgNWs decorated self‐healing polymer between two layers of polydimethylsiloxane, which exhibit good stability, self‐healability, and stretchability. For better mechanical properties, the self‐healing polymer is reinforced with carbon fibers (CFs). The sensors based on self‐healing polymer and AgNWs conductive network show high conductivity and excellent ability to repair both mechanical and electrical damage. They can detect different human motions accurately such as bending and recovering of the forearm and shank, the changes of palm, fist, and fingers. The fracture tensile stress of the reinforced self‐healing polymer (9 wt% CFs) is increased to 10.3 MPa with the elongation at break of 8%. The stretch/release responses under static and dynamic loads of the sensor have a high sensitivity, large sensing range, excellent reliability, and remarkable stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号