首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
4.
Suppose a vector autoregressive moving‐average model is estimated for m observed variables of primary interest for an application and nm observed secondary variables to aid in the application. An application indicates the variables of primary interest but usually only broadly suggests secondary variables that may or may not be useful. Often, one has many potential secondary variables to choose from but is unsure which ones to include in or exclude from the application. The article proposes a method called weighted‐covariance factor decomposition (WCFD), comparable to Stock and Watson's method here called principle‐components factor decomposition (PCFD), for reducing the secondary variables to fewer factors to obtain a parsimonious estimated model that is more effective in an application. The WCFD method is illustrated in the article by forecasting quarterly observed U.S. real GDP at monthly intervals using monthly observed four coincident and eight leading indicators from the Conference Board ( http://www.conference‐board.org ). The results show that root mean‐squared errors of GDP forecasts of PCFD‐factor models are 0.9–11.3% higher than those of WCFD‐factor models especially as estimation‐forecasting periods pass from the pre‐2007 Great Moderation through the 2007–2009 Great Recession to the 2009–2016 Slow Recovery.  相似文献   

5.
Surfaces unable‐to‐be‐irradiated are those that could not be directly exposed to UV irradiation because of their irregular structure or instability under UV irradiation. It is difficult to conduct surface photografting on these kinds of surfaces with conventional photografting methods. Here, a novel one‐step surface photografting method is introduced, by which some monomers were smoothly grafted on the surface of polymer substrates located in a region out of the reach of UV radiation. The mechanism is that the photochemical reaction is separated into three events, absorbing UV light in one place, then transporting light energy to another place, and reacting there; in other words, the conventional photochemical reaction is separated by space and time, and the key point is that the substrate does not need to be exposed to UV irradiation. The occurrence of grafting polymerization was proved by UV–vis, ATR‐IR, SEM, XPS, and water contact angle measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2269–2276, 2006  相似文献   

6.
Low‐molar‐mass, OH‐telechelic polybutadienes were hydrogenated (1) by diimide alone and (2) by using a novel method, consisting of the following two steps: up to some 95% degree of conversion by gaseous hydrogen with conventional Ziegler–Natta catalysts, and, only then, up to almost full saturation by diimide. The two‐step method, which has been found to be equally efficient, enables one to decrease substantially the necessary feed of p‐toluenesulfonylhydrazide, by the thermal decomposition of which diimide is generated. The crude saturated products, which could not be purified by a conventional (re)precipitation technique due to their low molar mass, contained a relatively large amount of a side‐product, bis(p‐tolyl)disulfide (TDS). It was found that free TDS can be converted quantitatively by reduction cleavage into p‐tolyl mercaptan (TM) without changing the structure of the polymeric product, and TM can then be removed from the mixture by alkaline extraction. Alternatively, the crude product can be freed from TDS by chromatography. With the two‐step hydrogenation method, only a small amount of the fragments and/or precursors of TDS add to the 5% residual CC double bonds of the partially hydrogenated polybutadiene chains. After any of the two purification procedures, the fully saturated products usually contained less than 1 wt % of such undesirable substituents only, which is comparable with the reported single‐step diimide hydrogenation of the initial, fully unsaturated polybutadiene in the presence of a proton scavenger (tri‐n‐propylamine). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3203–3213, 1999  相似文献   

7.
This work deals with the synthesis of a new type of compatibilizer suitable for blends or alloys of polypropylene and engineering polymers having aromatic residues or functionality complimentary to hydroxyl. Polypropylene–phenol formaldehyde graft copolymers from thermoplastic phenol formaldehyde (PF) resins and functionalized polypropylene (f‐PP) were synthesized by reactive extrusion. The content of PF in the graft copolymer was determined by reaction variables like type and density of functionality on PP, molecular weight of PF, and viscosity ratio of f‐PP and PF. The results showed that the viscosity ratio is of primary importance for such reactive processing. Also, type and concentration of the functional groups were important variables. The glycidyl methacrylate functionality resulted in higher conversions than did PP‐g‐maleic anhydride within the available reaction times. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 347–354, 2000  相似文献   

8.
In this article, the physical‐mechanical properties and processability of graft‐modified highly chlorinated polyethylene (HCPE; chlorine contents: ≥ 60%) with methyl methacrylate (MMA) by mechanochemistry reaction were studied. The results showed that the HCPE‐g‐MMA system is superior to unmodified HCPE in physical‐mechanical properties, particularly in processability. In addition, the HCPE‐g‐MMA system, with about 62% chlorine content, was the same as PVC in its physical‐mechanical properties. The HCPE‐g‐MMA system, with about 65.5% chlorine content, is the same as chlorinated poly(vinyl chloride) (CPVC) in its physical‐mechanical properties, except that the Vicat softening temperature and processability of HCPE‐g‐MMA system are superior to PVC and CPVC. Compared with PVC and CPVC, the HCPE‐g‐MMA system proves better due to its lack of a toxic monomer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 282–287, 2004  相似文献   

9.
2,3‐Dimethyl‐2‐butene (TME) was used as a model compound for polyisoprene in a study of 2‐mercaptobenzothiazole (MBT)‐accelerated sulfur vulcanization. Mixes that contained curatives only were heated in a DSC to various temperatures, while those that also contained TME were heated isothermally at 150°C in evacuated, sealed glass ampules. Heated mixtures were analyzed for residual curatives, intermediates, and reaction products by HPLC. It is proposed that MBT forms polysulfidic species (BtSxH) in the presence of sulfur and that these react with TME via a concerted, substitutive reaction pathway to form polysulfidic hydrogen‐terminated pendent groups of varying sulfur rank (TME–SxH). MBT is released as a by‐product of this reaction. Crosslinking occurs slowly as a result of the interaction of polythiol pendent groups, the rate being dependent on the pendent group concentration. H2S is released on crosslinking. 2,3‐Dimethyl‐2‐butene–1‐thiol was synthesized and reacted in the presence of sulfur to confirm the formation of crosslinked products (TME–Sx–TME). Benzothiazole‐terminated pendent groups (TME–SxBt) were not observed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1377–1385, 2000  相似文献   

10.
Two acrylic monomers bearing a pyrimidinyl moiety, N‐acryloyl‐N′‐2‐pyrimidinylpiperazine (APMP) and N‐methacryloyl‐N′‐2‐pyrimidinylpiperazine (MPMP), are prepared by reactions of N‐2‐pyrimidinylpiperazine with corresponding acryloyl chlorides in the presence of triethylamine. APMP and MPMP can be polymerized either by using radical initiators such as azobisisobutylonitrile or potassium persulfate (KPS) or by UV light irradiation without any sensitizer. APMP, MPMP, and their polymers are water soluble and liposoluble. They can act as sensitizers to initiate the photopolymerizations of acrylonitrile (AN) in DMF and acrylamide (AAm) or N‐acryloylmorpholine (AMPL) in an aqueous medium. They can also act as one component of a redox initiation system by combining with KPS to initiate the polymerization of AAm in an aqueous medium, and a superhigh molecular weight up to 106–107 for P(AAm) or 105–106 for P(AMPL) is obtained. The above polymerizations are pursued kinetically. The mechanism of the photopolymerizations initiated by MPMP or P(MPMP) are confirmed by an electron spin resonance study. By the fluorescent analysis of PAN and P(AAm) initiated by MPMP, APMP, or their polymers we confirm that they not only initiate the polymerization but also enter the polymer chains. The fluorescence spectra of MPMP, APMP, and their polymers are recorded. A fluorescence structural self‐quenching effect is also observed. The fluorescence of P(MPMP) can be quenched by adding electron‐deficient unsaturated compounds such as methacrylonitrile, AN, fumaronitrile, tetracyanoethylene, methyl acrylate, and methyl methacrylate and the correlation between the Stern–Volmer constants and the electron deficiency of the quenchers is described. The fluorescence quenching of P(MPMP) by a water‐soluble C60 derivative is also demonstrated. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 19–28, 2000  相似文献   

11.
A series of N‐isopropylacrylamide/3‐methyl‐1‐vinylimidazolium iodide (NIPAAm/MVI) copolymer gels were prepared from the various molar ratios of NIPAAm, cationic monomer MVI, and N,N′‐methylene bisacrylamide (NMBA) in this study. The influence of the amount of MVI in the copolymer gels on the swelling behaviors was investigated in various aqueous saline solutions. Results showed that the swelling ratios (SRs) of copolymer gels were significantly greater than those of NIPAAm homopolymer gels, and the higher the MVI content, the higher the volume phase transition temperature. The SRs for the NIPAAm/MVI copolymer gels decreased with an increase of the salt concentration. In various saline solutions, results showed that the effect of divalent ions on the SR was greater than that of monovalent ions for these hydrogels. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3242–3253, 1999  相似文献   

12.
Proton ligand dissociation and metal ligand stability constants of 2‐acrylamido‐2‐amino‐3‐hydroxy pyridine (AAHP) with some transition metal ions in 0.1 M KCl and 50% (v/v) ethanol–water mixture were calculated potentiometrically. In the presence of 2,2′‐azobisisobutyronitrile as initiator the proton‐polymeric ligand dissociation and metal polymeric ligand stability constants were also evaluated. The influence of temperature on the dissociation of AAHP and the stability of its metal complexes in the monomeric and polymeric forms were critically studied. On the basis of the thermodynamic functions, the dissociation process of AAHP was found nonspontaneous, endothermic, and entropically unfavorable, although the formed metal complexes showed spontaneous, endothermic, and entropically favorable behavior. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2552–2557, 2000  相似文献   

13.
The course of the reaction of trithiocyanuric acid (TTCA) with oxiranes, propylene oxide (PO), and epichlorohydrin in a dimethyl sulfoxide solution was monitored by the acid number and epoxy number. The involvement of one of the tautomers of TTCA was postulated on the basis of the studied reaction between TTCA and 3 equiv of oxirane. It was also evidenced that the use of a catalyst was necessary for the reaction between TTCA and an excess of PO. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4917–4920, 2006  相似文献   

14.
A series of pH‐thermoreversible hydrogels that exhibited volume phase transition was synthesized by various molar ratios of N‐isopropylacrylamide (NIPAAm), acrylamide (AAm), and 2‐hydroxyethyl methacrylate (HEMA). The influence of environmental conditions such as temperature and pH value on the swelling behavior of these copolymeric gels was investigated. Results showed that the hydrogels exhibited different equilibrium swelling ratios in different pH solutions. Amide groups could be hydrolyzed to form negatively charged carboxylate ion groups in their hydrophilic polymeric network in response to an external pH variation. The pH sensitivities of these gels also depended on the AAm content in the copolymeric gels; thus the greater the AAm content, the higher the pH sensitivity. These hydrogels, based on a temperature‐sensitive hydrogel, demonstrated a significant change of equilibrium swelling in aqueous media between a highly solvated, swollen gel state and a dehydrated network response to small variations of temperature. pH‐thermoreversible hydrogels were used for a study of the release of a model drug, caffeine, with changes in temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 221–231, 1999  相似文献   

15.
In this study, slightly crosslinked poly(dimethylsiloxane)urethane‐co‐poly(methyl methacrylate) (PDMS urethane‐co‐PMMA) graft copolymers based on two diisocyanates, 2,4‐toluene diisocyanate (2,4‐TDI) and m‐xylene diisocyanate (m‐XDI), were successfully synthesized. Glass‐transition behaviors of the copolymers were investigated. Results confirm that PDMS–urethane and PMMA are miscible in the 2,4‐TDI system, but are only partially miscible in the m‐XDI system. The methylene groups adjoining the isocyanate in the m‐XDI system show increased phase‐separation behavior over the 2,4‐TDI system, in which the benzene ring adjoins the isocyanate. The functional group of PDMS–urethane improves the impact strength of the copolymers. The toughness depends on the compatibility of PDMS–urethane and PMMA segments in the copolymers. In the m‐XDI system, the impact strength of the copolymer containing 3.75 phr macromonomer achieves a maximum value (from 13.02 to 22.21 J/m). The fracture behavior and impact strength of the copolymers in the 2,4‐TDI system are similar to that of PMMA homopolymer, although they are independent of the macromonomer content in the copolymer. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1875–1885, 2002  相似文献   

16.
Computer technology has provided chemical research with many new and advanced analytical techniques. By the year 2050 computers are predicted to run a million times faster than today's machines. Scientists have remained satisfied with their studies of molecules and to dwell in the dimensions of space and matter only. The difficulty for humans to comprehend the ‘idea of time’ has kept the issue of “time” on the sideline. The human brain is an infinitely more powerful and intelligent computer than our silicon chip driven computers. For the brain to be intelligent, the ‘idea of time’ appears to play an important role. With the large amount of lipid molecules found in the brain, lipidologists are in a position to unravel this mystery of life. The development of robotics, nanotechnology and genetic engineering depends on the continued growth of computing power. Quantum computers are new concepts and there is a chance for lipidologists to mimic the brain and produce an intelligent computer system, which runs on fat molecules (‘FAT’ chips). Imagination is the mother of invention. One of the latest advances in fatty acid chemistry is the study of lipid molecules containing a [60]fullerene unit. Such futuristic molecules are viewed as potential drugs, as well as potential components for the design of the ‘FAT’ chip. The future direction of the fat, nutrition and oleochemical industry rests on demands from the consumers. By the year 2050, the average life span for men and women in the industrial countries will increase significantly to 80 for women and 75 for men. A great demand for geriatric gourmet food, nutraceuticals, cosmetics and bodycare products is to be expected. With the birth rate declining in these countries, there will also be a great demand for special infant food products — especially, mother's milk.  相似文献   

17.
In this article, shear rheology of solutions of different concentrations obtained by dissolution of cellulose in the ionic liquid (IL) solvent 1‐butyl‐3‐methylimidazolium chloride ([Bmim]Cl) was studied by measuring the complex viscosity and dynamic moduli at different temperatures. The obtained viscosity curves were compared with those of lyocell solutions and melt blowing grade polypropylene melts of different melt flow rates (MFR). Master curves were generated for complex viscosity and dynamic moduli by using Carreau and Cross viscosity models to fit experimental data. From the Arrhenius plots of the shift factors with respect to temperature, the activation energies for shear flow were determined. These varied between 18.99 and 24.09 kCal/mol, and were compared with values for lyocell solutions and different polymeric melts, such as polyolefins, polystyrene, and polycarbonate. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
A series of thermosensitive hydrogels were prepared from the various molar ratios of N‐isopropylacrylamide, 1‐vinyl‐3‐(3‐sulfopropyl) imidazolium betaine (VSIB), and N,N′‐methylene‐bis‐acrylamide. The influence of the amount of VSIB in the copolymeric gels on the swelling behaviors in water, in various saline solutions, and at various temperatures was investigated. The results indicated that the higher the VSIB content in the hydrogel system, the higher the swelling ratio and the gel transition temperature. In the saline solution the results showed that when the concentration of salt is higher than the minimum salt concentration (MSC) of poly(VSIB), the deswelling behavior of the copolymeric gel was more effectively suppressed as more VSIB was added to the copolymeric gels. In addition, only the sample containing 12 mol % VSIB (V4) exhibited an antipolyelectrolyte's swelling behavior when the concentration of salt was higher than the MSC of poly(VSIB). This means that the swelling ratio of the hydrogel can be improved with a higher concentration salt solution. In addition, the anion effects were larger than the cation effects in the presence of a common anion (Cl) with different cations and a common cation (K+) with different anions for the hydrogel. Finally, the more VSIB in the hydrogel, the higher the diffusion coefficient in dynamic swelling. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 14–23, 2000  相似文献   

19.
Based on kinetic considerations, the following equation, connecting the zero‐shear viscosity of polymeric solutions with temperature and the molecular weight and concentration of the polymer was derived: RTln ηR = KBφMn /(1 + BφMn), where ηR is relative viscosity (i.e., the ratio of the solution viscosity to the solvent viscosity); K represents a change in enthalpy of viscous flow from a pure solvent to a pure polymer at the same temperature or from a polymer of low molecular weight (M) to one of higher molecular weight, and has the dimensions of energy (e.g., J/mol) because the ratio BφMn/(1 + BφMn) is dimensionless; φ is the volume or molar fraction of a polymer in solution (concentration units can be used in dilute solutions); B is a constant related to the stiffness of the chains of the polymer in a given solvent; and at BφMn >> 1, ln ηR = K/RT. The equation describes published data on the zero‐shear viscosity of four polar and nonpolar polymers in nine solvents with R2 > 0.98. This approach allows the use of solutions of moderate concentrations for the characterization of polymers and opens a way for a single‐point degree of polymerization (DP) determination of polymers at moderate concentrations if constants K, B, and n of the equation are known. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2064–2073, 2002  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号