首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Quaternary ammonium functionalized poly(arylene ether)s (QPAEs) containing 2,2′,6,6′‐tetramethylbiphenol moieties were designed and successfully synthesized via nucleophilic substitution polycondensation, bromination, quaternization and alkalization. The structure, water uptake, ion exchange capacities (IECs), hydroxide ion conductivities, and mechanical properties, as well as thermal and chemical stabilities of obtained QPAEs membranes were investigated. The QPAE‐a membrane with IEC value of 0.98 meq g?1 demonstrated the highest ion conductivity (47.4 mS cm?1) at 80°C. The ion transport activation energy (Ea) of QPAEs membranes varied from 8.57 to 19.95 kJ mol?1. After chemical stability test conditioned in 1M NaOH at 60°C for 7 days, the QPAEs membranes except QPAE‐c (IEC = 0.88 meq g?1) still exhibited high hydroxide ion conductivities (over 15 mS cm?1) and acceptable tensile strength (~10 MPa). These properties indicate that the ionomers membranes are potential candidates for anion exchange membranes in anion exchange membrane fuel cells. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41525.  相似文献   

2.
The influence of chemical compositions on the properties of sulfonated poly(arylene ether sulfone)‐based proton‐exchange membranes was studied. First, we synthesized three different series of random SPAES copolymers using three kinds of hydrophobic monomers, including 4,4′‐dihydroxyldiphenylether, 2,6‐dihydroxynaphthalene (DHN), and 4,4′‐hexafluoroisopropylidenediphenol (6F‐BPA) to investigate effects of hydrophobic components on the properties of SPAES membranes as proton‐exchange membranes. Random SPAES copolymers with 6F‐BPA showed the highest proton conductivity while random SPAES copolymers with DHN displayed the lowest methanol permeability among the three random copolymers. Subsequently, we synthesized multiblock SPAES using the DHN as a hydrophobic monomer and studied the effect of the length of hydrophilic segments in the multiblock SPAES copolymers on membrane performance. The results indicated that longer hydrophilic segments in the copolymers led to higher water uptake, proton conductivity, and proton/methanol selectivity of membranes even at low humidity. In addition, the morphology studies (AFM and SAXS measurements) of membranes suggested that multiblock copolymers with long hydrophilic segments resulted in developed phase separation in membranes, and ionic clusters formed more easily, thus improving the membrane performance. Therefore, both the kinds of hydrophobic monomers and the length of hydrophilic segments in SPAES copolymers would influence the membranes performance as proton‐exchange membranes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Radiation‐induced simultaneous grafting of styrene onto polytetrafluoroethylene (PTFE) films and the subsequent sulfonation in the chlorosulfonic acid/dichloroethane were investigated. The effects of the main radiation grafting conditions, such as the type of solvents, irradiation dose, dose rate, the styrene concentrations, etc., on the degree of grafting (DOG) were studied. To elucidate the influence of both the grafting and sulfonation conditions on the properties of the PTFE‐g‐polystyrene‐sulfonic acid (PSSA) membranes, the sulfonation conditions, including the sulfonation temperature and the concentration of the ClSO3H with respect to the DOG, were systematically evaluated. The grafted and sulfonated membranes were characterized by FTIR–ATR spectra, ion‐exchange capacity (IEC), water uptake, thickness measurement, etc. The as‐prepared PTFE‐g‐PSSA membranes in this work showed a good combination of a high IEC (0.85–2.75 meq g?1), acceptable water uptake (8.86–56.9 wt %), low thickness, and volume expansion and/or contraction. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1415–1428, 2006  相似文献   

4.
A series of poly(arylene ether)s with biphenyl units and pendant sulfonated phenylsulfonyl groups was prepared via nucleophilic aromatic substitution reactions of varying ratios of 3,5‐difluoro‐3′‐sulfonated diphenylsulfone and 4,4′‐difluorodiphenylsulfone with 4,4′‐biphenol. As such, the sulfonic acid moieties reside in the meta position of a pendant, electron‐poor phenylsulfonyl group. Mechanically robust proton‐exchange membranes with ion‐exchange capacities (IEC) ranging from 0.91 to 2.05 meq g?1 were cast from dimethylacetamide. The thermal stability of the membranes was evaluated via thermogravimetric analysis and the 5% weight losses were found to be in excess of 330 °C in air. The glass transition temperatures were determined, via differential scanning calorimetry, to range from a low of 148 to a high of 209 °C at IEC values of 0.91 and 1.79 meq g?1, respectively. The copolymer membranes reached proton conductivities as high as 142 mS cm?1 under 100% relative humidity, with relatively low water uptake values (8–32 wt%). Copyright © 2012 Society of Chemical Industry  相似文献   

5.
Random and multiblock copolymers of sulfonated poly(arylene ether sulfone) (SPAES) were synthesized and characterized to compare the differences in the properties of proton‐exchange membranes made with random and multiblock SPAES copolymers. Atomic force microscopy observations and small‐angle X‐ray scattering measurements suggested the presence of nanoscale, clusterlike structures in the multiblock SPAES copolymers but not in the random SPAES copolymers. Proton‐exchange membranes were prepared from random and multiblock copolymers with various ion‐exchange capacities (IECs). The water uptake, proton conductivity, and methanol permeability of the SPAES membranes depended on the IECs of the random and multiblock SPAES copolymers. At the same IEC, the multiblock SPAES copolymers exhibited higher performances with respect to proton conductivity and proton/methanol permeation selectivity than the random SPAES copolymers. The higher performances of the multiblock SPAES copolymers were thought to be due to their clusterlike structure, which was similar to the ionic cluster of a Nafion membrane. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Anion‐exchange organic‐inorganic hybrid membranes were prepared through sol‐gel reaction and UV/thermal curing of positively charged alkoxysilane and the alkoxysilane containing acrylate or epoxy groups. Properties of prepared hybrid membranes were varied by control of the molar ratio of the precursors. It was shown that the thermal degradation temperatures (Td) of the membranes were in the range of 212–226°C, water uptakes in the range of 9.6–14.6% and IEC values in the range of 0.9–1.6 mmol g?1. The hybrid membranes show high permeability to anions, as reflected by the high static transport number (t?) of the anion (Cl?). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

7.
Anion exchange membranes (AEM) are solid polymer electrolytes that facilitate ion transport in fuel cells. In this study, a polystyrene‐b‐poly(vinylbenzyl trimethylammonium) diblock copolymer was evaluated as potential AEM and compared with the equivalent homopolymer blend. The diblock had a 92% conversion of reactive sites with an IEC of 1.72 ± 0.05 mmol g?1, while the blend had a 43% conversion for an IEC of 0.80 ± 0.03 mmol g?1. At 50°C and 95% relative humidity, the chloride conductivity of the diblock was higher, 24–33 mS cm?1, compared with the blend, 1–6 mS cm?1. The diblock displayed phase separation on the length scale of 100 nm, while the blend displayed microphase separation (~10 μm). Mechanical characterization of films from 40 to 90 microns thick found that elasticity and elongation decreased with the addition of cations to the films. At humidified conditions, water acted as a plasticizer to increase film elasticity and elongation. While the polystyrene‐based diblock displayed sufficient ionic conductivity, the films' mechanical properties require improvement, i.e., greater elasticity and strength, before use in fuel cells. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41596.  相似文献   

8.
In order to investigate for anion exchange membranes (AEMs) with improved properties, four series of polyethersulfone‐based composite AEMs are fabricated by incorporating pristine and three functionalized silica nanoparticles containing propylamine, trimethylpropylamine, and melamine‐based dendrimer amine groups. The results show that by choosing appropriate functional agent, anion exchange membranes with improved parameters can be achieved. The polymeric matrix of the membranes is synthesized by chloromethylation of polyethersulfone using thionyl chloride followed by amination with trimethylamine (TMA). The effectiveness of chloromethylation process is confirmed by 1H NMR analysis. The effects of functional groups on characteristic and transport properties of the prepared composite membranes i.e., SEM, IEC, water uptake, porosity transport properties, and conductivity are investigated. The scanning electron microscope images illustrates that the synthesized membranes possess dense structures. Ion exchange capacity (IEC), water uptake, transport properties, and conductivity of the composite membranes are measured. In addition, the morphology and thermal stability are characterized. IECs and ion conductivities of up to 1.45 meq g?1 and 45.46 mS cm?1 and moderate transport characteristics are obtained from the modified membranes which confirm that these membranes are appropriate for applying in electro‐membrane processes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44596.  相似文献   

9.
This article presented the synthetic and preparation route of quaternary ammonium functionalized anion exchange membranes (AEMs), which were derived from an engineering plastics polymer, poly(arylene ether sulfone) with 3,3′,5,5′‐tetramethyl‐4,4′‐dihydroxybipheny moiety (PAES‐TM). The benzylmethyl groups on the main‐chain of PAES‐TM were converted to the bromomethyl groups via a radical reaction, thereby avoiding complicated chloromethylation, which required carcinogenic reagents. The chemical structure of the bromomethylated PAES was characterized by 1H NMR spectrum. Following a homogeneous quaternization with trimethylamine in the solution, a series of flexible and tough membranes were obtained by a solution casting and anion exchange process. The ion exchange capacity values were ranging from 1.03 to 1.37 meq g?1. The properties of the membranes, including water uptake, hydroxide conductivity, and methanol permeability were evaluated in detail. The AEM showed a high conductivity above 10?2 S cm?1 at room temperature and extremely low methanol permeability of 4.16–4.94 × 10?8 cm2 s?1. The high hydroxide conductivity of TMPAES‐140‐NOH could be attributed to the nano‐scale phase‐separated morphology in the membrane, which was confirmed by their transmission electron microscopy images. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40256.  相似文献   

10.
The synthesis and characterization of crosslinked aromatic polymer membranes with high ion exchange capacity (IEC) values are reported. Through aromatic nucleophilic substitution polycondensation and the subsequent sulfonation reaction, the highly sulfonated polymers SPPSU‐2S and SPPSU‐4S with high molecular weight (Mn = 138–145 kDa, Mw = 200–279 kDa) and well‐defined structures were synthesized. By solution casting and thermal annealing treatment, flexible crosslinked membranes with high solvent insolubility were obtained. The membranes exhibited mechanical and chemical stability as confirmed by dynamic mechanical analysis (DMA) and conductivity measurement. The crosslinked SPPSU‐4S membrane with IEC = 3.20 meq/g showed the highest proton conductivity of 0.163 S/cm at 120 °C, 90% RH, and improved thermal stability compared with its precursor (uncrosslinked) membrane. The results show that simple annealing method could improve significantly membranes properties of highly sulfonated aromatic polymers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44218.  相似文献   

11.
Sulfonated poly(ether ketone ketone) ionomers (SPEKK) with ion‐exchange capacities (IEC) between 0.2 and 3.4 meq/g were prepared by sulfonating PEKK with a mixture of concentrated and fuming sulfuric acids. Sulfonation occurs only on the phenyl rings attached to ether and ketone groups. The glass transition temperature of the dry SPEKK ionomers increased linearly with increasing IEC, and the ionomers were thermally stable to ~250°C, above which desulfonation occurred. Water‐swollen ionomers exhibited microphase separated morphologies, and the average correlation length determined by small angle X‐ray scattering increased with increasing IEC. The proton conductivity of hydrated SPEKK membranes measured by impedance spectroscopy ranged from ~10–3 to 10–1 S/cm as the IEC increased from ~1.0 to 2.4 meq/g. Single cell performance curves on membrane‐electrode assemblies (MEA) indicated that the SPEKK membranes approached the performance of Nafion? for an IEC of 2 meq/g. POLYM. ENG. SCI., 45:1081–1091, 2005. © 2005 Society of Plastics Engineers  相似文献   

12.
The search for practically applicable alkaline anion exchange membrane (AAEM) has been of continuous interest during the past decades. One of the main obstacles for current AAEM lies in the trade‐off between hydroxide conductivity and dimensional stability. In this contribution, novel quaternary phosphonium polymer microsphere (QPPMS) with crosslinked structure and dense carrier sites is synthesized via precipitation polymerization method, followed by incorporating into chitosan (CS) to prepare composite membrane. Compared with CS, the incorporation of QPPMS endows composite membrane more than two times increased ion exchange capacity (IEC) from 0.39 to 1.2 mmol g?1, and highly enhanced water uptake from 90% to 124% with an enhancement of 37.8%. The constructed interfacial and intra‐QPPMS transfer pathways confer almost nine times augment of conductivity at 20°C under 98% relative humidity (RH). Most importantly, the increase of area swelling is limited to 25.0% (from 32% to 40%) due to the crosslinked structure of QPPMS, which is inconceivable for homogeneous membranes and inorganic filler‐based composite membranes. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46715.  相似文献   

13.
Novel bisphenol A‐based sulfonated poly(arylene ether sulfone) (bi A‐SPAES) copolymers were successfully synthesized via direct copolymerization of disodium 3,3′‐disulfonate‐4,4′‐dichlorodiphenylsulfone, 4,4′‐dichlorodiphenylsulfone, and bisphenol A. The copolymer structure was confirmed by Fourier transform infrared spectra and 1H NMR analysis. The series of sulfonated copolymers based membranes were prepared and evaluated for proton exchange membranes (PEM). The membranes showed good thermal stability and mechanical property. Transmission electron microscopy was used to obtain the microstructures of the synthesized polymers. The membranes exhibit increased water uptake from 8% to 66%, ion exchange capacities from 0.41 to 2.18 meq/g and proton conductivities (25°C) from 0.012 to 0.102 S/cm with the degree of sulfonation increasing. The proton conductivities of bi A‐SPAES‐6 membrane (0.10–0.15 S/cm) with high‐sulfonated degree are higher than that of Nafion 117 membrane (0.095–0.117 S/cm) at all temperatures (20–100°C). Especially, the methanol diffusion coefficients of membranes (1.7 × 10?8 cm2/s–8.5 × 10?7 cm2/s) are much lower than that of Nafion 117 membrane (2.1 × 10?6 cm2/s). The new synthesized copolymer was therefore proposed as a candidate of material for PEM in direct methanol fuel cell. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
王盟  刘莉莉  李娜  胡朝霞  陈守文 《化工进展》2022,41(10):5645-5652
利用KMnO4、浓H2SO4的氧化性及纳米金刚石边缘缺陷引入含氧官能团,得到氧化金刚石(OND)。OND在强碱条件下与1,4-丁磺酸内酯反应,进行烷基磺酸的接枝,制备带有磺酸烷基链的纳米金刚石(SND)。热重分析、红外光谱结果表明了烷基磺酸基团的成功引入,SND的离子交换容量(IEC)达到1.1mmol/g。SND与磺化聚芳醚砜(SPAES)共混后,通过溶液浇铸法制备了表面均匀平整的SPAES-SND复合膜。SPAES-SND复合膜具有较高的吸水率及较低的溶胀率、更高的氧化稳定性及电导率。其中,SPAES-SND-0.5在80℃时最高吸水率达到了75%,拉伸强度为31.3MPa,断裂伸长率为25.1%,在80℃水中的质子电导率达到166mS/cm,显示了良好的综合性能。SPAES-SND-0.5膜在80℃、100%相对湿度(RH)下燃料电池最大功率密度达到了527mW/cm2,相比于原始的SPAES膜(347mW/cm2)提高了51.9%,其优异的质子电导率和电池功率表现出较好的应用前景。  相似文献   

15.
The feasibility of using bacterial cellulose as a source for environmentally compatible ion‐exchange membranes (IEM) was studied. Bacterial cellulose was modified with cation‐exchangeable acrylic acid (AAc) by UV‐graft polymerization to prepare membranes having ion‐exchange capacity (IEC) and greater structural density. Fourier transform infrared (FTIR) spectra showed that acrylic acids were successfully bound to bacterial cellulose. Morphological changes of acrylic acid‐treated bacterial cellulose were examined through scanning electron microscopy. A dense structure of the membrane increased with increasing UV‐irradiation time. Acrylic‐modified bacterial cellulose membrane showed reasonable mechanical properties, such as tensile strength of 12 MPa and elongation of 6.0%. Also the prepared membranes were comparable to the commercial membrane CMX in terms of the electrochemical properties, ie IEC of 2.5 meq g?1‐dry mem, membrane electric resistance of 3 ohm cm2, and transport number of 0.89. Copyright © 2003 Society of Chemical Industry  相似文献   

16.
This work concerns preparation of acid‐base polyelectrolyte membranes for fuel‐cell applications from cellulosic backbones for the first time. Grafted cellophane‐phosphoric acid‐doped membranes for direct oxidation methanol fuel cells (DMFC) were prepared following three steps. The first two steps were conducted to have the basic polymers. The first step was introducing of epoxy groups to its chemical structure through grafting process with poly(glycidylmethacrylate) (PGMA). The second step was converting the introduced epoxy groups to imides groups followed by phosphoric acid (? PO3H) doping as the last step. This step significantly contributes to induce ion exchange capacity (IEC) and ionic conductivity (IC). Chemical changes of the cellophane composition and morphology characters were followed using FTIR, TGA, and SEM analysis. Different factors affecting the membranes characters especially IEC, methanol permeability, and thermal stability were investigated and optimized to have the best preparation conditions. Compared to Nafion 117 membrane, cellophane‐modified membranes show a better IEC, less methanol permeability, and better mechanical and thermal stability. IEC in the range of 1–2.3 meq/g compared to 0.9 meq/g per Nafion was obtained, and methanol permeability has been reduced by one‐order magnitude. However, the maximum obtained IC for cellophane‐PGMA‐grafted membrane doped with phosphoric acid was found 2.33 × 10?3 (S cm?1) compared to 3.88 × 10?2 (S cm?1) for Nafion 117. The obtained results are very promising for conducting further investigations taking into consideration the very low price of cellophane compared to Nafion. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
The behavior of sulfonated poly(ether ether ketone) (sPEEK) membranes in ethanol–water systems was studied for possible application in direct ethanol fuel cells (DEFCs). Polymer membranes with different degrees of sulfonation were tested by means of uptake, swelling, and ethanol transport with dynamic measurements (liquid–liquid and liquid–gas systems). Ethanol permeability was determined in an liquid–liquid diffusion cell. For membranes with an ion‐exchange capacity (IEC) between 1.15 and 1.75 mmol/g, the ethanol permeability varied between 5 × 10?8 and 1 × 10?6 cm2/s, being dependent on the measuring temperature. Ethanol and water transport in liquid–gas systems was tested with pervaporation as a function of IEC and temperature. Higher IEC accounted for higher fluxes and lower water/ethanol selectivity. The temperature had a large effect on the fluxes, but the selectivity remained constant. Furthermore, the membranes were characterized with proton conductivity measurements. The proton diffusion coefficient was calculated, and a transition in the proton transfer mechanism was found at a water number of 12. Membranes with high IEC (>1.6 mmol/g) exhibited larger proton diffusion coefficients in ethanol–water systems than in water systems. The membrane with the lowest IEC exhibited the best proton transport to ethanol permeability selectivity. The use of sPEEK membranes in DEFC systems depends on possible modifications to stabilize the membranes in the higher conductive region rather than on modifications to increase the proton conductivity in the stable region. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
One type of negatively charged alkoxysilane, that is, sulfonated 3‐(mercaptopropyl)trimethoxysilane (SMPTS), has been developed from 3‐(mercaptopropyl)trimethoxysilane (MPTS) and hydrogen peroxide. SMPTS is used to modify sulfonated poly(ether sulfone) (SPES) through in situ sol–gel process. The membranes with proper SMPTS dosage show enhanced ion exchange capacity (IEC), hydrophilicity, mechanical strength, chemical stability, and proton conductivity, which prove that SMPTS is an effective modifier for preparing proton‐exchange hybrid membranes. With MPTS of 5–20%, the hybrid membranes exhibit IEC 1.34–1.50 mmol g?1, thermal stability 264–316°C, and proton conductivity 0.0015–0.0102 S cm?1 and thus recommended for potential application in fuel cells. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Potential membranes for polymer electrolyte membrane fuel cell based on crosslinked sulphonated fluorinated polystyrenes (PS) were synthesised in two steps. First, azide‐telechelic polystyrene was obtained by iodine transfer polymerisation of styrene in the presence of 1,6‐diiodoperfluorohexane followed by azido chain‐end functionalisation. Then azide‐telechelic polystyrene was efficiently crosslinked with 1,10‐diazido‐1H,1H,2H,2H,9H,9H,10H,10H‐perfluorodecane under UV irradiation. After 45 min only, almost completion of azide crosslinking could be achieved, resulting in crosslinked membranes with insoluble fractions higher than 95%. The sulphonation of the crosslinked membranes afforded ionic exchange capacities (IECs) ranging from 2.2 to 3.2 meq g–1. The hydration number was shown to be very high (from 30 to 75), depending on both the content of perfluorodecane and of sulphonic acid groups. The morphology of the membranes, assessed by small‐angle X‐ray scattering, was found to be a lamellar‐type structure with two types of ionic domains. For the membrane that exhibited an IEC value of 2.2 meq·g–1, proton conductivity was in the same range as that of Nafion® (120–135 mS·cm–1), whereas the membrane IEC value of 3.2 meq·g–1 showed a proton conductivity higher than that of Nafion® in liquid water from 25 to 80 °C, though a high water uptake.  相似文献   

20.
The pores of microfiltration polyethersulfone membranes have been functionalized with homopolymer and block copolymer grafts through sequential cationic polymerization of styrene and substituted styrene monomers, namely 4‐chloromethylstyrene and 4‐ethoxystyrene. 1H NMR characterization confirmed successful incorporation of polymeric grafts at different stages of functionalization. The functionalized membrane showed a 90% decrease in membrane permeability compared to the raw membrane indicating the presence of polymeric chains in the membrane flow path. Functionalized membranes have as many as 125 repeat units per chain equating to an ion‐exchange capacity (IEC) of 4.9 meq/g, representing 92% of the theoretical IEC of an ion‐exchange resin. A pseudo‐first‐order kinetic equation correlated well (R2 ~ 0.99) with the experimental kinetic data of formation of polymeric grafts. Polymer growth studies showed that at lower initiator surface density (initiator contact time <135 min), graft length and IEC were impacted by monomer feed concentration and initiator contact time. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42501.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号