共查询到20条相似文献,搜索用时 15 毫秒
1.
The natural circulation of primary coolant plays an important role in removing the decay heat in Station-Black-out (SBO) accident from reactor core to decay heat removal systems, such as RVACS and PHXS cooling, for lead-based reactor. In order to study the natural circulation characteristics of primary coolant under Reactor Vessel Air Cooling System (RVACS) and primary heat exchangers (PHXs) cooling, which are crucial to the safety of lead-based reactors. A three-dimensional CFD model for the China Lead-based Research Reactor (CLEAR-I) has been built to analyze the thermal-hydraulics characteristics of primary coolant system and the cooling capability of the two systems. The abilities of the two cooling systems with different decay heat powers were discussed as well. The results demonstrated that the decay heat could be removed effectively only relying on either of the two systems. However, RVACS appeared the obvious thermal stratification phenomenon in the cold pool. Besides, with the increase in decay heat power, the natural circulation capacity of primary coolant between the two systems had a significant difference. The PHXs cooling system was stronger than the RVACS, with respect to the mass flow of primary coolant and the average temperature difference between cold pool and hot pool. 相似文献
2.
Ayako Ono Hideki Kamide Jun Kobayashi Norihiro Doda Osamu Watanabe 《Journal of Nuclear Science and Technology》2016,53(9):1385-1396
A fully natural circulation-based system is adopted in the decay heat removal system (DHRS) of an advanced loop type fast reactor. Decay heat removal by natural circulation is a significant passive safety measure against station blackout. As a representative of the advanced loop type fast reactor, DHRS of the sodium fast reactor of 1500 MWe being designed in Japan comprises a direct reactor auxiliary cooling system (DRACS), which has a dipped heat exchanger in the reactor vessel, and two units of primary reactor auxiliary cooling system (PRACS), which has a heat exchanger in the primary-side inlet plenum of an intermediate heat exchanger in each loop. The thermal-hydraulic phenomena in the plant under natural circulation conditions need to be understood for establishing a reliable natural circulation driven DHRS. In this study, sodium experiments were conducted using a plant dynamic test loop to understand the thermal-hydraulic phenomena considering natural circulation in the plant under a broad range of plant operation conditions. The sodium experiments simulating the scram transient confirmed that PRACS started up smoothly under natural circulation, and the simulated core was stably cooled after the scram. Moreover, they were conducted by varying the pressure loss coefficients of the loop as the experimental parameters. These experiments confirmed robustness of the PRACS, which the increasing of pressure loss coefficient did not affect the heat removal capacity very much due to the feedback effect of natural circulation. 相似文献
3.
Osamu Watanabe Kazuhiro Oyama Junji Endo Norihiro Doda Ayako Ono Hideki Kamide 《Journal of Nuclear Science and Technology》2013,50(9):1102-1121
A natural circulation evaluation methodology has been developed to ensure the safety of a sodium-cooled fast reactor (SFR) of 1500 MW adopting the natural circulation decay heat removal system (NC-DHRS). The methodology consists of a one-dimensional safety analysis which can evaluate the core hot spot temperature taking into account the temperature flattening effect in the core, a three-dimensional fluid flow analysis which can evaluate the thermal-hydraulics for local convections and thermal stratifications in the primary system and DHRS, and a statistical safety evaluation method for the hot spot temperature in the core. The safety analysis method and the three-dimensional analysis method have been validated using results of a 1/10 scaled water test simulating the primary system of the SFR and a sodium test simulating a part of the primary system and the DHRS with about a 1/7 scale, and the applicability of the safety analysis for the SFR has been confirmed by comparing with the three-dimensional analysis adopting the turbulence model. Finally, a statistical safety evaluation has been performed for the SFR using the safety analysis method. 相似文献
4.
Algirdas Kaliatka Eugenijus Uspuras Georgij Krivoshein 《Nuclear Engineering and Design》2010,240(5):1242-1250
The main problem in nuclear energy is providing of safety at all stages of lifetime of nuclear installations in conditions of normal operation, accidents and at shutdown. Ignalina NPP, located in Lithuania, is one of the latest with RBMK reactors at highest capacity. Ignalina NPP has two units, both are closed for decommissioning now (in 2004 and 2009). Both units are equipped with RBMK-1500 reactors, the thermal power output is 4200 MW, the electrical power capacity is 1500 MW for each. In RBMK-1500 reactor the fuel assemblies remain for long time inside reactor core after the final shutdown. The paper discusses possibility of heat removal from the RBMK-1500 core at shutdown condition by natural circulation of water (1) and air (2) inside the fuel channels. In first case the decay heat from fuel assemblies is removed due to natural circulation of water and the piping above reactor core should be cooled by means of ventilation in the drum separator compartments. To warrant free access of air in to fuel channels (in the second case) the reactor cooling system should be completely dry out and the pressure headers and the steam discharge valves in steam lines should be opened. If mentioned conditions will be fulfilled, the reactor core will be cooled by natural circulation of water or air and fuel rods remain intact. 相似文献
5.
6.
The evaluation of core thermohydraulics under natural circulation conditions is significant to utilize passive safety features of fast breeder reactors (FBRs). Under low flow conditions, it is predicted that buoyancy effects and heat transfer through wrapper tubes, i.e. inter-subassembly heat transfer, will significantly influence the flow and temperature distributions in subassemblies. Thus, steady-state sodium experiments were carried out using a three-subassembly model. The transverse temperature distributions in the subassemblies were measured under conditions wherein inter-subassembly heat transfer occurred. A wall subchannel factor was introduced to estimate the sodium temperature near the wrapper wall, which characterizes the inter-subassembly heat transfer. This factor enables a one-dimensional system code to predict the inter-subassembly heat transfer accurately. The characteristics of the factor were studied experimentally. It was shown that a buoyancy parameter, Gr*/Re, and a heat flux ratio of wrapper wall to pin surface were essential to predict the wall subchannel factor and also the peaking factor. Experimental analyses were also carried out using a three-dimensional analysis code that modeled the multi-bundle system. Good agreement between experiments and calculations was obtained for temperature distributions influenced by the inter-subassembly heat transfer. 相似文献
7.
Young-Jong Chung Hee-Cheol KimBub-Dong Chung Moon-Ki ChungSung-Quun Zee 《Annals of Nuclear Energy》2006
An investigation of the thermal hydraulic characteristics and the natural circulation performance in the passive residual heat removal system (PRHRS) for an integral type reactor have been carried out using the VISTA facility and the calculated results using the MARS code, which is a best estimate system analysis code have been compared with the experimental results. The VISTA facility consists of the primary, secondary, and the PRHRS circuits, to simulate the SMART design verification program. The experimental results show that the fluid is well stabilized in the PRHRS loop and the PRHRS heat exchanger accomplishes well its functions in removing the transferred heat from the primary side in the steam generator as long as the heat exchanger is submerged in the water in the emergency cooldown tank (ECT). The decay heat and the sensible heat can be sufficiently removed from the primary loop with the operation of the PRHRS. The MARS code predicts reasonably well the characteristics of the natural circulation in the PRHRS. From the calculation results, most of the heat transferred from the primary system is removed at the PRHRS heat exchanger by a condensation heat transfer. 相似文献
8.
9.
10.
中国铅基研究堆非能动余热排出系统可靠性分析 总被引:1,自引:0,他引:1
铅冷快堆是第四代核能系统推荐堆型之一,世界上多个铅冷快堆采用非能动余热排出系统。非能动系统中作为驱动的自然力与阻力在数量级上接近,由周边环境、材料参数的变化引起的波动不可忽略,因此需要研究非能动系统可靠性。改进了常用的响应面分析法,并应用于中国铅基研究堆反应堆容器空气冷却系统(Reactor Vessel Air Cooling System,RVACS)中。分析中使用流体计算软件Fluent模拟中国铅基研究堆RVACS系统的余热排出过程,研究了输入参数的不确定性对系统可靠性及反应堆安全产生的影响。在大量模拟数据的基础上结合神经网络法建立了输入参数不确定性和结果不确定性之间的映射关系,并以此分析RVACS非能动失效概率。分析结果表明在全厂断电的情况下,RVACS四组并联排热管中的两组也能够可靠地导出反应堆余热。 相似文献
11.
The heat removal capacity of a RCCS is one of the major parameters limiting the capacity of a HTGR based on a passive safety system. To improve the plant economy of a HTGR, the decay heat removal capacity needs to be improved. For this, a new analysis system of an algebraic method for the performance of various RCCS designs was set up and the heat transfer characteristics and performance of the designs were analyzed. Based on the analysis results, a new passive decay heat removal system with a substantially improved performance, LFDRS was developed. With the new system, one can have an expectation that the heat removal capacity of a HTGR could be doubled. 相似文献
12.
13.
A. John Arul C. Senthil Kumar S. Athmalingam Om Pal Singh K. Suryaprakasa Rao 《Annals of Nuclear Energy》2006
The 500 MW Indian pool type Prototype Fast Breeder Reactor (PFBR), is provided with two independent and diverse Decay Heat Removal (DHR) systems viz., Operating Grade Decay Heat Removal System (OGDHRS) and Safety Grade Decay Heat Removal System (SGDHRS). OGDHRS utilizes the secondary sodium loops and Steam–Water System with special decay heat removal condensers for DHR function. The unreliability of this system is of the order of 0.1–0.01. The safety requirements of the present generation of fast reactors are very high, and specifically for DHR function the failure frequency should be less than ∼1E-7/ry. Therefore, a passive SGDHR system using four completely independent thermo-siphon loops in natural convection mode is provided to ensure adequate core cooling for all Design Basis Events. The very high reliability requirement for DHR function is achieved mainly with the help of SGDHRS. This paper presents the reliability analysis of SGDHR system. Analysis is performed by Fault Tree method using ‘CRAFT’ software developed at Indira Gandhi Centre for Atomic Research. This software has special features for compact representation and CCF analysis of high redundancy safety systems encountered in nuclear reactors. Common Cause Failures (CCF) are evaluated by β factor method. 相似文献
14.
在华北电力大学自然循环实验室进行了自然循环条件下窄矩形通道内的临界热流密度(CHF)实验,对实验中出现的流动停滞及传热恶化现象进行了观察。提出自然循环饱和沸腾条件下,窄矩形通道内的流动停滞-传热恶化发生机理。即自然循环流量漂移发生后会产生流型变迁不稳定,继而造成流量的持续波动,并导致停滞现象,从而使出口附近的液膜层在一定的热流密度下被完全蒸发并引起CHF现象。而窄矩形通道内,由于受间隙尺寸的限制,蒸汽流对加热面上的液膜层产生挤压作用,加热面上液膜层厚度因此会变得较薄,在较小的加热量下便能发生传热恶化。基于机理分析,给出了相应的计算模型。引入了考虑窄通道间隙尺寸效应的无量纲约束数Nconf和反映自然循环流动特点的特征因子C,分别对模型进行了修正。根据实验结果,对计算模型进行了多元回归拟合,并对其准确性进行了验证。通过对实验结果与模型计算值的比较发现,随着通道入口流速和系统压力的增大,CHF均增大;而随着出口干度的增大,CHF会减小。 相似文献
15.
Hyun-Sik Park Ki-Yong ChoiSeok Cho Sung-Jae YiChoon-Kyung Park Moon-Ki Chung 《Annals of Nuclear Energy》2008
Natural circulation characteristics of an integral type reactor during the operation of a passive residual heat removal system (PRHRS) following a safety related event has been experimentally investigated by using the VISTA facility. A PRHRS actuation trip signal is generated by a high power trip signal following a steam flow increasing event. The experimental results show that the single-phase coolant flows steadily in the primary loop by a natural convection process and that it effectively removes the decay heat from the core through a steam generator during the PRHRS operation. The heat transfers through the PRHRS heat exchanger and the emergency cooldown tank (ECT) are sufficient enough to enable a two-phase natural circulation of the coolant in the PRHRS loop. 相似文献
16.
In this study, a pool-typed design similar to sodium-cooled fast reactor (SFR) of the fourth generation reactors has been modeled using CFD simulations to investigate the characteristics of a passive mechanism of Shutdown Heat Removal System (SHRS). The main aim is to refine the reactor pool design in terms of temperature safety margin of the sodium pool. Thus, an appropriate protection mechanism is maintained in order to ensure the safety and integrity of the reactor system during a shutdown mode without using any active heat removal system. The impacts on the pool temperature are evaluated based on the following considerations: (1) the aspect ratio of pool diameter to depth, (2) the values of thermal emissivity of the surface materials of reactor and guard vessels, and (3) innerpool liner and core periphery structures. The computational results show that an optimal pool design in geometry can reduce the maximum pool temperature down to ∼551 °C which is substantially lower than ∼627 °C as calculated for the reference case. It is also concluded that the passive Reactor Air Cooling System (RACS) is effective in removing decay heat after shutdown. Furthermore, thermal radiation from the surface of the reactor vessel is found to be important; and thus, the selection of the vessel surface materials with a high emissivity would be a crucial factor for consideration in safety design. This study provides future researchers with a guideline on designing safety measures for the fourth generation of the fast reactors with no particular reference to any specific manufacturer. 相似文献
17.
B. Farrar J. C. Lefvre S. Kubo C. H. Mitchell Y. Yoshinari S. Itooka 《Nuclear Engineering and Design》1999,193(1-2)
In the framework of the cooperation on fast reactor between the European and Japanese electrical utilities, the design companies responsible for the demonstration fast breeder reactor (DFBR) in Japan and the European fast reactor (EFR) have performed a comparative evaluation of the safety qualified decay heat removal systems of the two reactor designs. At the level of overall safety and concept design there is an obvious similarity between the two DHR systems. In both cases heat is removed directly from the reactor vessel primary sodium by systems designed according to a similar deterministic methodology, with a probabilistic assessment performed to demonstrate achievement of the required reliability. Nevertheless, the evaluation revealed a number of differences resulting from different national practices. These include the application of diversity and redundancy philosophy, the extent of passivity taken into account, the consequences of postulated maintenance outage on the design and the decay heat curve. 相似文献
18.
基于响应面拟合方法中国铅基研究实验堆非能动余热排出系统可靠性分析 总被引:1,自引:0,他引:1
非能动系统已广泛地应用于新一代堆的设计中,其可靠性分析成为新型反应堆概率安全评价(Probabilistic Safety Analysis,PSA)的重要内容。本文提出一种用于非能动系统可靠性分析的响应面拟合方法,并应用于中国铅基研究实验堆反应堆容器空气冷却系统(Reactor Vessel Air Cooling System,RVACS)的可靠性分析。采用流体计算软件Fluent模拟RVACS系统的输入输出作为求解响应面性能函数的输入样本,利用最小二乘法和bootstrap方法估计响应面性能函数的系数,以响应面模型代替Fluent模型分析RVACS系统的非能动失效概率。分析表明,在所有能动余热排除系统不可用的情况下,RVACS四组并联排热管中的两组也能够可靠地导出反应堆余热。RVACS系统可靠性高。 相似文献
19.
Comparing with the fission product nuclide (FP) decay heat summation calculation result in MeV/sec/fission based on the JENDL FP decay and yield data files 2011 for the burst fission, FP decay heat calculated by ORIGEN2.2 coupled with JENDL-4.0 base library ORLIBJ40 was verified at the cooling time from 1 sec to 108 sec for 235U (thermal), 238U (fast), 239Pu (thermal) and 241Pu (thermal). For these fission nuclides, FP decay heat calculated by CASMO5 at the same cooling time after a short irradiation (104 sec) was also compared with that of ORIGEN2.2. In the analysis of decay heat measurements at the cooling time from 2.3 years to 27 years consisting of four data sets on the fuel assemblies discharged from the US PWRs and BWRs, and the Swedish PWRs and BWRs, the average values of the ratios of the calculated to measured results (C/E's) were from 0.972 to 1.031 for ORIGEN2.2, and from 0.977 to 1.016 for CASMO5. The standard deviations of C/E's for the four data sets were from 0.02 to 0.03 for the both codes except for those of the US BWR fuel assemblies which were from 0.11 to 0.12. The obtained C/E's were similar to those in the precedent study. 相似文献
20.
Decay heat removal is a key safety and design issue for the Generation IV gas (helium)-cooled fast reactor. This paper investigates the natural convection capability of the dedicated DHR loops under depressurized conditions while injecting a heavy gas into the system. Investigated is a loss-of-coolant accident using the TRACE code. The goal of the study is to improve fuel/cladding temperature behavior during LOCA transients with the enhancement of passive safety by operation in natural convection only, while accepting 10 bar back-up pressure in the guard containment. The paper investigates the cooling capabilities of different heavy gases. Furthermore, different injection locations and mass flow rates have been tested, in order to address possible core-overcooling problems resulting from rapid depressurization of the gas reservoir. It has been shown that, among the gases investigated, CO2 is the best choice from the thermal-hydraulics viewpoint, being able to cool the core satisfactorily for a broad range of injection rates. N2 can be envisaged as an alternative solution in case of chemical problems with CO2. Supplementary studies carried out for the CO2 and N2 injection cases include that of the sensitivity to the number of available DHR loops and to the LOCA break-size. The effect of the resulting neutron spectrum changes on the shutdown-reactivity margin has also been investigated. 相似文献