首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jin H  Liu GL 《Nanotechnology》2012,23(12):125202
We have fabricated nanotextured Si substrates that exhibit controllable optical reflection intensities and colors. Si nanopore has a photon trapping nanostructure but has abrupt changes in the index of refraction displaying a darkened specular reflection. Nanoscrew Si shows graded refractive-index photon trapping structures that enable diffuse reflection to be as low as 2.2% over the visible wavelengths. By tuning the 3D nanoscale silicon structure, the optical reflection peak wavelength and intensity are changed in the wavelength range of 300-800?nm, making the surface have different reflectivity and apparent colors. The relation between the surface optical properties with the spatial features of the photon trapping nanostructures is examined. Integration of photon trapping structures with planar Si structure on the same substrate is also demonstrated. The tunable photon trapping silicon structures have potential applications in enhancing the performance of semiconductor photoelectric devices.  相似文献   

2.
Particle tracking techniques for electrokinetic microchannel flows   总被引:8,自引:0,他引:8  
We have applied particle tracking techniques to obtain spatially resolved velocity measurements in electrokinetic flow devices. Both micrometer-resolution particle image velocimetry (micro-PMV) and particle tracking velocimetry (PTV) techniques have been used to quantify and study flow phenomena in electrokinetic systems applicable to microfluidic bioanalytical devices. To make the flow measurements quantitative, we performed a series of seed particle calibration experiments. First, we measure the electroosmotic wall mobility of a borosilicate rectangular capillary (40 by 400 microm) using current monitoring. In addition to this wall mobility characterization, we apply PTV to determine the electrophoretic mobilities of more than 1,000 fluorescent microsphere particles in aqueous buffer solutions. Particles from this calibrated particle/ buffer mixture are then introduced into two electrokinetic flow systems for particle tracking flow experiments. In these experiments, we use micro-PIV, together with an electric field prediction, to obtain electroosmotic flow bulk fluid velocity measurements. The first example flow system is a microchannel intersection where we demonstrate a detailed documentation of the similitude between the electrical fields and the velocity fields in an electrokinetic system with uniform zeta potential, zeta. In the second system, we apply micro-PIV to a microchannel system with nonuniform zeta. The latter experiment provides a simultaneous measurement of two distinct wall mobilities within the microchannel.  相似文献   

3.
Here the analysis on the inclusion of a pulse width modulated (PWM) ac link unified power flow controller into a power flow program is discussed. Similarly, a PWM series compensator is connected to the power system to regulate the active power flow on the corresponding transmission line. Details of the Newton-Raphson's power flow algorithm are exhibited. Results of simulation are presented on a 39-buses power system.  相似文献   

4.
Analytical and numerical methods are employed to investigate species transport by electrophoretic or electroosmotic motion in the curved geometry of a two-dimensional turn. Closed-form analytical solutions describing the turn-induced diffusive and dispersive spreading of a species band are presented for both the low and high Peclet number limits. We find that the spreading due to dispersion is proportional to the product of the turn included angle and the Peclet number at low Peclet numbers. It is proportional to the square of the included angle and independent of the Peclet number when the Peclet number is large. A composite solution applicable to all Peclet numbers is constructed from these limiting behaviors. Numerical solutions for species transport in a turn are also presented over a wide range of the included angle and the mean turn radius. On the basis of comparisons between the analytical and numerical results, we find that the analytical solutions provide very good estimates of both dispersive and diffusive spreading provided that the mean turn radius exceeds the channel width. These new solutions also agree well with data from a previous study. Optimum conditions minimizing total spreading in a turn are presented and discussed.  相似文献   

5.
Liu S  Zhao Q  Xu J  Yan K  Peng H  Yang F  You L  Yu D 《Nanotechnology》2012,23(8):085301
A poly(methyl methacrylate) assisted dry transfer method was developed to transfer graphene microflake onto a suspended SiN chip in an effective and efficient way for further graphene nanopore drilling for DNA analysis. Graphene microflakes can be patterned by e-beam lithography to a designed shape and size on a large scale of a few thousands simultaneously. Subsequently, individual graphene microflakes can be picked up and transferred to a target hole on a suspended SiN membrane with 1?μm precision via a site-specific transfer-printing method. Nanopores with different diameters from 3 to 20?nm were drilled on the as-transferred graphene membrane in a transmission electron microscope. This method offers a fast and controllable way to fabricate graphene nanopores for DNA analyses.  相似文献   

6.
Li Z  He Q  Ma D  Chen H  Soper SA 《Analytical chemistry》2010,82(24):10030-10036
This paper reports a novel protocol consisting of the thermomodulated electrokinetic enrichment, elution, and separation of charged species based upon a thermoswitchable swelling-shrinking property of a poly(N-isopropylacrylamide), PNIPAAm, hydrogel. A 0.2-1 mm long PNIPAAm hydrogel plug was photopolymerized inside a glass microfluidic channel to produce a composite device consisting of the PNIPAAm hydrogel plug and the glass microchannel (abbreviated as plug-in-channel). After voltage was applied to the composite device, anions, such as FITC, could be enriched at the cathodic end of the PNIPAAm plug when the temperature of the plug was kept below its lower critical solution temperature (LCST, ~32 °C). The concentrated analytes could then be eluted by electroosmotic flow when the temperature of the plug was heated above the LCST. The mechanism of the thermoswitchable ion enrichment/elution process was studied with the results presented. The analytical potential of the composite device was demonstrated for the temperature-modulated preconcentration, elution, and separation of FITC-labeled amino acids.  相似文献   

7.
Computer simulations are used to study electrokinetic injections on microfluidic devices (microchips). The gated and pinched injection techniques are considered. Each injection technique uses a unique sequence of steps with different electric field distributions and field magnitudes in the channels to effectuate a virtual valve. The goal of these computer simulations is to identify operating parameters providing optimal valve performance. In the pinched injection, the conditions of both loading and dispensing steps were analyzed to reach a compromise between the sample plug spatial extent and its concentration. For the gated injection, the condition of leakage free valve operation was found for the sample loading step. The simulation results for the gated valve are compared with experimental data.  相似文献   

8.
A planar quadrupole ion trap is proposed. We have demonstrated an extremely large operating range by trapping ions and particles with mass-to-charge ratio ranging from 10(2) to 10(9) at frequencies from 2.8 x 10(6) to 60 Hz at an operating pressure of 1.1 x 10(-4) to 760 Torr, respectively, using a trap radius of r1 = 1 mm. We have also performed mass spectrometry with a resolution of 1.2 amu with mass-to-charge range from 50 to 150. Our geometry is simple enough to be integrated into existing integrated circuits and microelectromechanical system devices, opening up the possibility of many novel hybrid applications and experiments.  相似文献   

9.
The T matrix method is used to compute equilibrium positions and orientations for spheroidal particles trapped in Gaussian light beams. It is observed that there is a qualitative difference between the behavior of prolate and oblate ellipsoids in linearly polarized Gaussian beams; the former generally orient with the symmetry axis parallel to the beam except at very small particle sizes, while the latter orient with the symmetry axis perpendicular to the beam. In the presence of a circularly polarized beam, it is demonstrated that oblate ellipsoids will experience a torque about the beam axis. However, for a limited range of particle sizes, where the particle dimensions are comparable with the beam waist, the particles are predicted to rotate in a sense counter to the sense of rotation of the circular polarization. This unusual prediction is discussed in some detail.  相似文献   

10.
Characterization of trapping force on metallic mie particles   总被引:1,自引:0,他引:1  
Ke PC  Gu M 《Applied optics》1999,38(1):160-167
Transverse trapping force on three types of metallic Mie particles (gold, nickel, and silver) is measured for different values of the numerical aperture of an objective used for trapping. The experimental results are compared with those calculated with a modified ray-optics model. It is found that, unlike the situation for a trapped dielectric particle, the maximum transverse trapping efficiency for a trapped metallic particle is increased with the numerical aperture of the trapping objective. After consideration of radiometric force, which is caused by the heating effect, and spherical aberration, which is induced by the refractive-index mismatch, the measured results agree well with the theoretical prediction. The magnitude of the radiometric force is approximately ten times stronger than the maximum transverse trapping force.  相似文献   

11.
We present a new method to calculate trapping forces of dielectric particles with diameters D < or = lambda in arbitrary electromagnetic, time-invariant fields. The two components of the optical force, the gradient force and the scattering force, are determined separately. Both the arbitrary incident field and the scatterer are represented by plane-wave spectra. The scattering force is determined by means of the momentum transfer in either single- or double-scattering processes. Therefore the second-order Born series is evaluated and solved in the frequency domain by Ewald constructions. Numerical results of our two-force-component approach and an established calculation method are compared and show satisfying agreement. Our procedure is applied to investigate axial trapping by focused waves experiencing effects of aperture illumination and refractive-index mismatch.  相似文献   

12.
An integrated microdevice was utilized for the autonomous coupling of solid-phase extraction (SPE) to micellar electrokinetic chromatography (MEKC). Porous plugs of polymethacrylate polymer approximately 200 microm in length) were fabricated by ultraviolet irradiation in microchannels. Microcolumns of hydrophobic beads packed against the polymethacrylate plugs were utilized for the quantitative extraction of rhodamine B, yielding preconcentration factors over 200 for a 90-s extraction. The calculated detection limit for this dye was 60 fM. A sample of coumarin dyes were concentrated by SPE, eluted in a nonaqueous solvent from a separate on-chip reservoir, and injected by a gated valve onto a separate column for MEKC analysis. Using the integrated device, a completely automated sequence of extraction, elution, injection, separation, and detection were performed in less than 5 min. Observed separation efficiencies were high, with plate heights below 2 microm. The analysis was at least 3 times faster than semiautomated, conventional, solid-phase extraction, while requiring no user intervention. The design, fabrication, and autonomous operation of the device is discussed.  相似文献   

13.
14.
In this paper, the ultrasonic trapping of small particles by a vibrating rod is proposed and analyzed. An aluminum rod, which is driven by an actuator and operates in the 0th order vibration mode (back and forth vibration mode), can trap small particles in water. The experimental phenomena and the trapping mechanism are theoretically analyzed, and the acoustic radiation force acting on a spherical particle near the surface of the vibrating rod is estimated. The effects of operating frequency, rod radius, particle radius and other physical parameters are investigated experimentally and theoretically, and useful guidelines to optimize the trapping capability are proposed.  相似文献   

15.
A microchip gated valve is demonstrated that uses a single voltage source and three fluid reservoirs. The fluidic valve is a cross intersection, and the channels are dimensioned to perform the appropriate voltage division, simplifying the voltage control hardware. A single voltage source is applied directly to the sample reservoir and through a high-voltage relay to the buffer reservoir, and the waste reservoir is grounded. The volume of sample dispensed is determined by the duration that the high-voltage relay is open. Volumetric reproducibility is demonstrated to be <0.5% relative standard deviation for volumes of ≥20 pL. The valve is tested for the minimum applied voltage necessary for leakage-free operation, i.e., sample diffusing from the cross intersection into the analysis channel. Moreover, appropriate channel dimensions are used to minimize the number of fluid reservoirs allowing effluent from the analysis and waste channels to be combined into a single reservoir.  相似文献   

16.
Hydrogenated amorphous silicon (a-Si:H) PIN photodiodes have been developed and characterized as fluorescence detectors for microfluidic analysis devices. A discrete a-Si:H photodiode is first fabricated on a glass substrate and used to detect fluorescent dye standards using conventional confocal microscopy. In this format, the limit of detection for fluorescein flowing in a 50-microm deep channel is 680 pM (S/N = 3). A hybrid integrated detection system consisting of a half-ball lens, a ZnS/YF3 multilayer optical interference filter with a pinhole, and an annular a-Si:H photodiode is also developed that allows the laser excitation to pass up through the central aperture in the detector. Using this integrated detection device, the limit of detection for fluorescein is 17 nM, and DNA fragment sizing and chiral analysis of glutamic acid are successfully performed. The a-Si:H detector exhibits high sensitivity at the emission wavelengths of commonly used fluorescent dyes and is readily microfabricated and integrated at low cost making it ideal for portable microfluidic bioanalyzers and emerging large scale integrated microfluidic technologies.  相似文献   

17.
Integrated system for rapid PCR-based DNA analysis in microfluidic devices   总被引:14,自引:0,他引:14  
An integrated system for rapid PCR-based analysis on a microchip has been demonstrated. The system couples a compact thermal cycling assembly based on dual Peltier thermoelectric elements with a microchip gel electrophoresis platform. This configuration allows fast (approximately 1 min/ cycle) and efficient DNA amplification on-chip followed by electrophoretic sizing and detection on the same chip. An on-chip DNA concentration technique has been incorporated into the system to further reduce analysis time by decreasing the number of thermal cycles required. The concentration injection scheme enables detection of PCR products after performing as few as 10 thermal cycles, with a total analysis time of less than 20 min. The starting template copy number was less than 15 per injection volume.  相似文献   

18.
Scatter of a two-dimensional Gaussian beam of a rectangular cross section by individual particles suspended in a fluid in a cylindrical channel is modeled by using a full-wave approach. First, the internal and scattered fields associated with the cylindrical channel and the two-dimensional Gaussian beam are computed. The spatial variations of the computed electromagnetic field inside the channel indicate that particles and cells of sizes relevant to flow cytometry are subjected to essentially plane-wave illumination, and hence Lorenz-Mie theory is applicable for spherical particles. Further, it is assumed that the perturbation of the electromagnetic field in the channel that is due to the presence of a particle is negligible, allowing us to ignore the interactive scatter of the particle and the channel (they are electromagnetically uncoupled). This approximation is valid when the particle intercepts a small fraction of the total energy inside the channel and when the particle or cell has a low relative refractive index. Measurements of scatter from the channel agree with the analytical model and are used to determine the location of detectors to measure scatter from particles in the channel. Experimental results of accumulated scatter from single latex spheres flowing in the channel show good agreement with computed results, thereby validating the internal field and uncoupled scatter models.  相似文献   

19.
Journal of Materials Science - We prepared metal nano-particles deposited on SWCNTs by heat-treatment of SWCNTs encapsulating metal complex (Ni(acac)2, Cu(acac)2) molecules inside their hollow...  相似文献   

20.
We demonstrate the simultaneous trapping of multiple high-refractive index (n > 2) particles in a dynamic array of counterpropagating optical tweezers in which the destabilizing scattering forces are canceled. These particles cannot be trapped in single-beam optical tweezers. The combined use of two opposing high-numerical aperture objectives and micrometer-sized high-index titania particles yields an at least threefold increase in both axial and radial trap stiffness compared to silica particles under the same conditions. The stiffness in the radial direction is obtained from measured power spectra; calculations are given for both the radial and the axial force components, taking spherical aberrations into account. A pair of acousto-optic deflectors allows for fast, computer-controlled manipulation of the individual trapping positions in a plane, while the method used to create the patterns ensures the possibility of arbitrarily chosen configurations. The manipulation of high-index particles finds its application in, e.g., creating defects in colloidal photonic crystals and in exerting high forces with low laser power in, for example, biophysical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号