共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We investigate the possibility of using Semantic Web data to improve hypertext Web search. In particular, we use relevance feedback to create a ‘virtuous cycle’ between data gathered from the Semantic Web of Linked Data and web-pages gathered from the hypertext Web. Previous approaches have generally considered the searching over the Semantic Web and hypertext Web to be entirely disparate, indexing, and searching over different domains. While relevance feedback has traditionally improved information retrieval performance, relevance feedback is normally used to improve rankings over a single data-set. Our novel approach is to use relevance feedback from hypertext Web results to improve Semantic Web search, and results from the Semantic Web to improve the retrieval of hypertext Web data. In both cases, an evaluation is performed based on certain kinds of informational queries (abstract concepts, people, and places) selected from a real-life query log and checked by human judges. We evaluate our work over a wide range of algorithms and options, and show it improves baseline performance on these queries for deployed systems as well, such as the Semantic Web Search engine FALCON-S and Yahoo! Web search. We further show that the use of Semantic Web inference seems to hurt performance, while the pseudo-relevance feedback increases performance in both cases, although not as much as actual relevance feedback. Lastly, our evaluation is the first rigorous ‘Cranfield’ evaluation of Semantic Web search. 相似文献
3.
Content-based video retrieval is an increasingly popular research field, in large part due to the quickly growing catalogue of multimedia data to be found online. Even though a large portion of this data concerns humans, however, retrieval of human actions has received relatively little attention. Presented in this paper is a video retrieval system that can be used to perform a content-based query on a large database of videos very efficiently. Furthermore, it is shown that by using ABRS-SVM, a technique for incorporating Relevance feedback (RF) on the search results, it is possible to quickly achieve useful results even when dealing with very complex human action queries, such as in Hollywood movies. 相似文献
4.
Improved AdaBoost-based image retrieval with relevance feedback via paired feature learning 总被引:2,自引:0,他引:2
Boost learning algorithm, such as AdaBoost, has been widely used in a variety of applications in multimedia and computer vision. Relevance feedback-based image retrieval has been formulated as a classification problem with a small number of training samples. Several machine learning techniques have been applied to this problem recently. In this paper, we propose a novel paired feature AdaBoost learning system for relevance feedback-based image retrieval. To facilitate density estimation in our feature learning method, we propose an ID3-like balance tree quantization method to preserve most discriminative information. By using paired feature combination, we map all training samples obtained in the relevance feedback process onto paired feature spaces and employ the AdaBoost algorithm to select a few feature pairs with best discrimination capabilities in the corresponding paired feature spaces. In the AdaBoost algorithm, we employ Bayesian classification to replace the traditional binary weak classifiers to enhance their classification power, thus producing a stronger classifier. Experimental results on content-based image retrieval (CBIR) show superior performance of the proposed system compared to some previous methods. 相似文献
5.
In content-based image retrieval (CBIR), relevant images are identified based on their similarities to query images. Most CBIR algorithms are hindered by the semantic gap between the low-level image features used for computing image similarity and the high-level semantic concepts conveyed in images. One way to reduce the semantic gap is to utilize the log data of users' feedback that has been collected by CBIR systems in history, which is also called “collaborative image retrieval.” In this paper, we present a novel metric learning approach, named “regularized metric learning,” for collaborative image retrieval, which learns a distance metric by exploring the correlation between low-level image features and the log data of users' relevance judgments. Compared to the previous research, a regularization mechanism is used in our algorithm to effectively prevent overfitting. Meanwhile, we formulate the proposed learning algorithm into a semidefinite programming problem, which can be solved very efficiently by existing software packages and is scalable to the size of log data. An extensive set of experiments has been conducted to show that the new algorithm can substantially improve the retrieval accuracy of a baseline CBIR system using Euclidean distance metric, even with a modest amount of log data. The experiment also indicates that the new algorithm is more effective and more efficient than two alternative algorithms, which exploit log data for image retrieval. 相似文献
6.
7.
《Expert systems with applications》2014,41(18):8225-8233
The current web IR system retrieves relevant information only based on the keywords which is inadequate for that vast amount of data. It provides limited capabilities to capture the concepts of the user needs and the relation between the keywords. These limitations lead to the idea of the user conceptual search which includes concepts and meanings. This study deals with the Semantic Based Information Retrieval System for a semantic web search and presented with an improved algorithm to retrieve the information in a more efficient way.This architecture takes as input a list of plain keywords provided by the user and the query is converted into semantic query. This conversion is carried out with the help of the domain concepts of the pre-existing domain ontologies and a third party thesaurus and discover semantic relationship between them in runtime. The relevant information for the semantic query is retrieved and ranked according to the relevancy with the help of an improved algorithm. The performance analysis shows that the proposed system can improve the accuracy and effectiveness for retrieving relevant web documents compared to the existing systems. 相似文献
8.
Many problems in information processing involve some form of dimensionality reduction, such as face recognition, image/text retrieval, data visualization, etc. The typical linear dimensionality reduction algorithms include principal component analysis (PCA), random projection, locality-preserving projection (LPP), etc. These techniques are generally unsupervised which allows them to model data in the absence of labels or categories. In this paper, we propose a semi-supervised subspace learning algorithm for image retrieval. In relevance feedback-driven image retrieval system, the user-provided information can be used to better describe the intrinsic semantic relationships between images. Our algorithm is fundamentally based on LPP which can incorporate user's relevance feedbacks. As the user's feedbacks are accumulated, we can ultimately obtain a semantic subspace in which different semantic classes can be best separated and the retrieval performance can be enhanced. We compared our proposed algorithm to PCA and the standard LPP. Experimental results on a large collection of images have shown the effectiveness and efficiency of our proposed algorithm. 相似文献
9.
10.
An accurate and rapid method is required to retrieve the overwhelming majority of digital images. To date, image retrieval methods include content-based retrieval and keyword-based retrieval, the former utilizing visual features such as color and brightness, and the latter utilizing keywords that describe the image. However, the effectiveness of these methods in providing the exact images the user wants has been under scrutiny. Hence, many researchers have been working on relevance feedback, a process in which responses from the user are given as feedback during the retrieval session in order to define a user’s need and provide an improved result. Methods that employ relevance feedback, however, do have drawbacks because several pieces of feedback are necessary to produce an appropriate result, and the feedback information cannot be reused. In this paper, a novel retrieval model is proposed, which annotates an image with keywords and modifies the confidence level of the keywords in response to the user’s feedback. In the proposed model, not only the images that have been given feedback, but also other images with visual features similar to the features used to distinguish the positive images are subjected to confidence modification. This allows for modification of a large number of images with relatively little feedback, ultimately leading to faster and more accurate retrieval results. An experiment was performed to verify the effectiveness of the proposed model, and the result demonstrated a rapid increase in recall and precision using the same amount of feedback. 相似文献
11.
In relevance feedback algorithms, selective sampling is often used to reduce the cost of labeling and explore the unlabeled data. In this paper, we proposed an active learning algorithm, Co-SVM, to improve the performance of selective sampling in image retrieval. In Co-SVM algorithm, color and texture are naturally considered as sufficient and uncorrelated views of an image. SVM classifiers are learned in color and texture feature subspaces, respectively. Then the two classifiers are used to classify the unlabeled data. These unlabeled samples which are differently classified by the two classifiers are chose to label. The experimental results show that the proposed algorithm is beneficial to image retrieval. 相似文献
12.
In spite of significant improvements in video data retrieval, a system has not yet been developed that can adequately respond
to a user’s query. Typically, the user has to refine the query many times and view query results until eventually the expected
videos are retrieved from the database. The complexity of video data and questionable query structuring by the user aggravates
the retrieval process. Most previous research in this area has focused on retrieval based on low-level features. Managing
imprecise queries using semantic (high-level) content is no easier than queries based on low-level features due to the absence
of a proper continuous distance function. We provide a method to help users search for clips and videos of interest in video
databases. The video clips are classified as interesting and uninteresting based on user browsing. The attribute values of clips are classified by commonality, presence, and frequency within each
of the two groups to be used in computing the relevance of each clip to the user’s query. In this paper, we provide an intelligent
query structuring system, called I-Quest, to rank clips based on user browsing feedback, where a template generation from the set of interesting and uninteresting
sets is impossible or yields poor results.
相似文献
Ramazan Savaş Aygün (Corresponding author)Email: |
13.
Baokun Hu Author Vitae Author Vitae Shuming Gao Author Vitae Author Vitae Chuhua Xian Author Vitae 《Pattern recognition》2010,43(8):2950-2961
In this study, we present a parallel approach to relevance feedback based on similarity field modification that simultaneously considers all factors affecting the similarity field for 3D model retrieval. First, we present a novel unified mathematical model which formalizes the problem as an optimization problem with multiple objectives and constraints. Secondly, our approach optimizes all the parameters synchronously by treating all the modification operations of the similarity field equally. Thirdly, we improved the standard particle swarm optimization in two different ways. Finally, we present several experiments that show the advantages of our method over existing serial ones. 相似文献
14.
Most CBIR (content based image retrieval) systems use relevance feedback as a mechanism to improve retrieval results. NN (nearest neighbor) approaches provide an efficient method to compute relevance scores, by using estimated densities of relevant and non-relevant samples in a particular feature space. In this paper, particularities of the CBIR problem are exploited to propose an improved relevance feedback algorithm based on the NN approach. The resulting method has been tested in a number of different situations and compared to the standard NN approach and other existing relevance feedback mechanisms. Experimental results evidence significant improvements in most cases. 相似文献
15.
Support vector machine active learning for music retrieval 总被引:7,自引:0,他引:7
16.
17.
Samuel Rota Bulò Author Vitae Massimo Rabbi Author Vitae Author Vitae 《Pattern recognition》2011,44(9):2109-2122
In this paper, we propose a novel approach to content-based image retrieval with relevance feedback, which is based on the random walker algorithm introduced in the context of interactive image segmentation. The idea is to treat the relevant and non-relevant images labeled by the user at every feedback round as “seed” nodes for the random walker problem. The ranking score for each unlabeled image is computed as the probability that a random walker starting from that image will reach a relevant seed before encountering a non-relevant one. Our method is easy to implement, parameter-free and scales well to large datasets. Extensive experiments on different real datasets with several image similarity measures show the superiority of our method over different recent approaches. 相似文献
18.
Relevance feedback in image retrieval: A comprehensive review 总被引:22,自引:1,他引:22
We analyze the nature of the relevance feedback problem in a continuous representation space in the context of content-based
image retrieval. Emphasis is put on exploring the uniqueness of the problem and comparing the assumptions, implementations,
and merits of various solutions in the literature. An attempt is made to compile a list of critical issues to consider when
designing a relevance feedback algorithm. With a comprehensive review as the main portion, this paper also offers some novel
solutions and perspectives throughout the discussion.
RID="*"
ID="*" Work was done while at the University of Illinois. 相似文献
19.
20.
Relevance feedback is a mechanism to interactively learn a users query concept online. It has been extensively used to improve the performance of multimedia information retrieval. In this paper, we present a novel interactive pattern analysis method that reduces relevance feedback to a two-class classification problem and classifies multimedia objects as relevant or irrelevant. To perform interactive pattern analysis, we propose two online pattern classification methods, called interactive random forests (IRF) and adaptive random forests (ARF), that adapt a composite classifier known as random forests for relevance feedback. IRF improves the efficiency of regular random forests (RRF) with a novel two-level resampling technique called biased random sample reduction, while ARF boosts the performance of RRF with two adaptive learning techniques called dynamic feature extraction and adaptive sample selection. During interactive multimedia retrieval, both ARF and IRF run two to three times faster than RRF while achieving comparable precision and recall against the latter. Extensive experiments on a COREL image set (with 31,438 images) demonstrate that our methods (i.e., IRF and RRF) achieve at least a
improvement on average precision and recall over the state-of-the-art approaches. 相似文献