共查询到20条相似文献,搜索用时 0 毫秒
1.
Sn doped Fe3O4/SiO2 core-shell structures with the magnetic and photocatalytic properties have been successfully synthesized using Fe3O4 microspheres as the precursor. The morphology, phase and structure of the bifunctional products were investigated by X-ray powder diffraction, transmission electron microscopy, selected-area electron diffraction, high-resolution transmission electron microscopy, energy dispersive spectroscopy, and scanning electron microscopy. The effects of the amount and hydrolysis rate of tetraethyl orthosilicate on the preparation of the Fe3O4/SiO2 core-shell structures were investigated. Low concentration and slow hydrolysis rate of tetraethyl orthosilicate were useful to obtain the uniform silica coated Fe3O4. The magnetic measurements indicated that the Sn doped Fe3O4/SiO2 core-shell structures showed ferromagnetic property and the magnetic saturation value slightly decreased after coated the silica layer. The magnetic Sn doped Fe3O4/SiO2 core-shell structures exhibited good photocatalytic activity in the degradation of methyl orange and could be separated by applying an appropriate magnetic field. 相似文献
2.
Souza KC Ardisson JD Sousa EM 《Journal of materials science. Materials in medicine》2009,20(2):507-512
Ordered mesoporous materials like SBA-15 have a network of channels and pores with well-defined size in the nanoscale range. This particular silica matrix pore architecture makes them suitable for hosting a broad variety of compounds in very promising materials in a range of applications, including drug release magnetic carriers. In this work, magnetic nanoparticles embedded into mesoporous silica were prepared in two steps: first, magnetite was synthesized by oxidation-precipitation method, and next, the magnetic nanoparticles were coated with mesoporous silica by using nonionic block copolymer surfactants as structure-directing agents. The materials were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), N(2) adsorption, and scanning electron microscopy (SEM). The influence of magnetic nanoparticles on drug release kinetics was studied with cisplatin, carboplatin, and atenolol under in vitro conditions in the absence and in the presence of an external magnetic field (0.25 T) by using NdFeB permanent magnet. The constant external magnetic field did not affect drug release significantly. The low-frequency alternating magnetic field had a large influence on the cisplatin release profile. 相似文献
3.
A new, simple, low-temperature method for the synthesis of superparamagnetic, photocatalytic, nanocomposite particles for applications in the decomposition of pollutants in water is presented. The method is based on the coating of clusters of superparamagnetic maghemite (γ-Fe2O3) nanoparticles with a photocatalytic anatase layer using the hydrolysis of aqueous TiOSO4. The clusters of an appropriate size between 100 and 200 nm form by the simultaneous agglomeration of the aminopropyl-triethoxy-silane-grafted maghemite nanoparticles with a size of approximately 15 nm in a suspension of diluted TiOSO4. During a sudden increase of pH with the addition of NaOH the titania is heterogeneously nucleated at the cluster surfaces. If the hydrolysis was conducted at an elevated temperature of 90 °C, the titania layer was nanocrystalline anatase. The composition of the nanocomposite particles, i.e., the thickness of the anatase layer, can be controlled simply by changing the starting TiOSO4/Fe2O3 ratio for low titania contents, and by multiple coatings to get high titania contents. The photocatalytic activity of the nanocomposites was evaluated in the photocatalytic decomposition of formic acid. The activity seems to increase with an increase in the thickness and the crystallinity of the anatase coating, whereas it decreased after the calcination of the as-synthesized nanocomposite. The coating of the maghemite nanoparticles with a thin layer of insulating silica also slightly improves the photocatalytic activity. 相似文献
4.
Mingzai Wu 《Materials Research Bulletin》2004,39(12):1875-1880
Magnetite/silica nanocomposite was synthesized by a facile solvothermal processing at 150 °C for about 10 h. X-ray diffraction (XRD) analysis revealed the effect of annealing on the crystallinity of silica. Transmission electron microscopy (TEM) images showed the good dispersion of magnetite in the silica matrix. Magnetic properties of the nanocomposite were characterized by vibration sample magnetometer (VSM), and the enhanced coercivity was explained by the intrinsic anisotropy of the particles enhanced by the interparticle dipolar fields. 相似文献
5.
Molecular control of plasmon coupling is investigated in sub-100 nm assemblies composed of 13 nm gold "satellite" particles tethered by reconfigurable DNA nanostructures to a 50 nm gold "core" particle. Reconfiguration of the DNA nanostructures from a compact to an extended state results in blue shifting of the assembly plasmon resonance, indicating reduced interparticle coupling and lengthening of the core-satellite tether. Scattering spectra of the core-satellite assemblies before and after reconfiguration are compared with spectra calculated using a structural model that incorporates the core/satellite ratio determined by TEM imaging and estimates of tether length based upon prior measurements of interparticle separation in DNA linked nanoparticle networks. A strong correspondence between measured and simulated difference spectra validates the structural models that link the observed plasmon modulation with DNA nanostructure reconfiguration. 相似文献
6.
Fengwei Zhang Jianrui Niu Haibo Wang Honglei Yang Jun Jin Na Liu Yubin Zhang Rong Li Jiantai Ma 《Materials Research Bulletin》2012,47(2):504-507
A novel and high-performance palladium-based catalyst for Heck reaction was prepared easily by the co-precipitation method. The catalyst was characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectrophotometry (AAS). The catalyst afforded a fast conversion of the 4-bromonitrobenzene to 4-nitrostilbene at a catalyst loading of 5 mol%, and the efficiency of the catalyst remains unaltered even after 6 repeated cycles. The excellent catalytic performance of the Pd/Fe3O4 catalyst might be attributed to the enhanced synergistic effect between Pd nanoparticles and magnetite. 相似文献
7.
Nisaraporn Suthiwangcharoen Tao Li Kai Li Preston Thompson Shaojin You Qian Wang 《Nano Research》2011,4(5):483-493
Poly(caprolactone-b-2-vinylpyridine) (PCL-P2VP) coated with folate-conjugated M13 (FA-M13) provides a nanosized delivery system which is capable
of encapsulating hydrophobic antitumor drugs such as doxorubicin (DOX). The DOX-loaded FA-M13-PCL-P2VP assemblies had an average
diameter of approximately 200 nm and their structure was characterized using transmission electron microscopy, scanning electron
microscopy, and dynamic light scattering. The particles were stable at physiological pH but could be degraded at a lower pH.
The release of DOX from the nanoassemblies under acidic conditions was shown to be significantly faster than that observed
at physiological pH. In addition, the DOX-loaded FA-M13-PCL-P2VP particles showed a distinctly greater cellular uptake and
cytotoxicity against folate-receptor-positive cancer cells than folate-receptor-negative cells, indicating that the receptor
facilitates folate uptake via receptor-mediated endocytosis. Furthermore, the DOX-loaded particles also had a significantly
higher tumor uptake and selectivity compared to free DOX. This study therefore offers a new way to fabricate nanosized drug
delivery vehicles. 相似文献
8.
9.
Qing Yuan Nan Li Wangchang Geng Yue Chi Xiaotian Li 《Materials Research Bulletin》2012,47(9):2396-2402
A simple and efficient method has been developed to fabricate core–shell structured Fe3O4@SiO2@meso-TiO2 nanocomposites with enhanced photocatalytic activity in this paper. The as-made core–shell structure is composed of a central magnetite core with a strong response to external fields, an interlayer of SiO2, and an outer layer of TiO2 nanocrystals with mesoporous structure. Fe3O4@SiO2 was obtained through a sol–gel process. To avoid magnetic loss caused by magnetite core phase transition and particle reunion, we adopt a mild synthetic method to get anatase shell instead of traditional high-temperature calcination. The structure of resulting composites was characterized and their photocatalytic activities were also tested. Fe3O4@SiO2@meso-TiO2 composite exhibits higher photocatalytic activities than Fe3O4@SiO2@solid-TiO2 for the degradation of rhodamine B in aqueous suspension. The excellent photocatalytic activities are ascribed to the high surface area and pore volume created by mesoporous anatase shell. 相似文献
10.
The g-C3N4/Fe3O4/Ag/Ag2SO3 nanocomposites have been successfully fabricated by facile refluxing method. The as-obtained products were characterized by XRD, EDX, SEM, TEM, UV–vis DRS, FT–IR, TGA, PL, and VSM techniques. The results suggest that the Ag/Ag2SO3 nanoparticles have anchored on the surface of g-C3N4/Fe3O4 nanocomposite, showing strong absorption in the visible region. The evaluation of photocatalytic activity indicates that for the g-C3N4/Fe3O4/Ag/Ag2SO3 (40%) nanocomposite, the degradation rate constant was 188 × 10?4 min?1 for rhodamine B, exceeding those of the g-C3N4 (16.0 × 10?4 min?1) and g-C3N4/Fe3O4 (20.2 × 10?4 min?1) by factors of 11.7 and 9.3, respectively. The results showed that the nanocomposite prepared by refluxing for 120 min has the superior photocatalytic activity and its activity decreased with rising the calcination temperature. The trapping experiments confirmed that superoxide ion radical was the main active species in the photocatalytic degradation process. Also, it was demonstrated that the magnetic photocatalyst has considerable activity in degradation of one more dye pollutant. Finally, the reusability of the photocatalyst was evaluated by five consecutive catalytic runs. This work may open up new insights into the utilization of magnetically separable nanocomposites and provide new opportunities for facile fabrication of g-C3N4-based plasmonic photocatalysts. 相似文献
11.
Bioinspired synthesis of hierarchical mesoporous silica nanotubes by using natural cellulose substance (filter paper) and cetyltrimethylammonium bromide (CTAB) micelles as dual templates was achieved. CTAB micelles were adsorbed onto the surfaces of ultrathin titania film precoated cellulose nanofibers, followed by hydrolysis and condensation of tetraethyl orthosilicate around these micelles to form silica. After calcination and sulfuric acid treatment to remove the organic templates and the thin titania film, bulk white sheets composed of natural hierarchical silica nanotubes with mesopores in the walls were obtained, to which silver nanoparticles were further induced to give a silica-nanotube/metal-nanoparticle hybrid. 相似文献
12.
In this paper we present the magnetic properties of mesoporous silica-coated Fe3O4 nanoparticles. The coating of magnetite nanoparticles with mesoporous silica shell was performed under ultrasonic irradiation. The obtained mesoporous silica-coated magnetite nanoparticles were characterized by powder X-ray diffraction, focused ion beam-scanning electron microscopy, nitrogen adsorption-desorption isotherms and vibrating sample magnetometer. The hysteretic behavior was studied using first-order reversal curves diagrams. The X-ray diffraction result indicates that the extreme chemical and physical conditions created by acoustic cavitations have an insignificant effect on crystallographic structural characteristic of magnetite nanoparticles. Changes in the coercivity distributions of the magnetite nanoparticles were observed on the first-order reversal curves diagrams for the samples with coated particles compared with the samples containing uncoated particles of magnetite. The coated particles show an increased most probable coercivity of about 20% compared with the uncoated particles which can be associated with an increased anisotropy due to coating even if the interaction field distribution measured on the diagrams are virtually identical for coated/uncoated samples. 相似文献
13.
Although nanostructures based on noble metal alloys are widely utilized in (electro)catalysis,their low-temperature synthesis remains an enormous challenge due to the different Nernst equilibrium potentials of metal precursors.Herein,we describe the successful synthesis of trimetallic PtRhNi alloy nanoassemblies (PtRhNi-ANAs) with tunable Pt/Rh ratios using a simple mixed cyanogel reduction method and provide a detailed characterization of their chemical composition,morphology,and structure.Additionally,the electrochemical properties of PtRhNi-ANAs are examined by cyclic voltammetry,revealing compositiondependent electrocatalytic activity in the ethanol oxidation reaction (EOR).Compared to a commercial Pt black electrocatalyst,optimized Pt3Rh1Ni2-ANAs display remarkably enhanced EOR electrocatalytic performance in alkaline media. 相似文献
14.
Wainaina J Kim NH Kim J Jin M Park SH 《Journal of nanoscience and nanotechnology》2012,12(7):5920-5924
This study describes the synthesis of magnetite/amphiphilic polymer composite nanoparticles that can be potentially used simultaneously for cancer diagnosis and therapy. The synthesis method was a one-shot process wherein magnetite nanoparticles were mixed with core-crosslinked amphiphilic polymer (CCAP) nanoparticles, prepared using a copolymer of a urethane acrylate nonionomer (UAN) and a urethane acrylate anionomer (UAA). The CCAP nanoparticles had a hydrophobic core and a hydrophilic exterior with both PEG segments and carboxylic acid groups, wherein the magnetite nanoparticles were coordinated and stabilized. According to DLS data, the ratio of UAN to UAA and the ratio of magnetite to polymer are keys to controlling the size and thus, the stability of the composite nanoparticles. The magnetic measurement indicated that the composite nanoparticles had superparamagnetic properties and high saturation magnetization. The preliminary magnetic resonance imaging showed that the particles produced an enhanced image even when their concentration was as low as 80 microg/ml. 相似文献
15.
Wen Wang Ruigang Liu Weili Liu Junjun Tan Wenyong Liu Hongliang Kang Yong Huang 《Journal of Materials Science》2010,45(20):5567-5573
Porous silica with hierarchical structures was prepared from ethyl-cyanoethyl cellulose/poly(3-(methacryloyloxy)propyl-trimethoxysilane)
(E-CE)C/P(MPTOS) composites with fixed cholesteric liquid crystalline (LC) phase. The scanning and transmission electron microscopy
(SEM and TEM) and N2 sorption measurements results indicate that the silica prepared from cholesteric LC composites is of hierarchical macro-,
meso- and micro-porous structures, and the average pore size of the silica can be tailored by the content of the cholesteric
LC phase in the (E-CE)C/P(MPTOS) composites. The resultant silicas have high specific surface area with the highest value
of 837 m2/g at the pore volume of 0.83 cm3/g. This approach provides a new choice for the preparation of porous silica materials, especially from the templates that
are not compatible with aqueous system. 相似文献
16.
聚苯乙烯/Fe3O4纳米复合材料的制备与表征 总被引:2,自引:0,他引:2
采用油酸为表面活性剂表面处理Fe3O4纳米粒子,将其分散在苯乙烯单体中,进行原位聚合,制备PS/Fe3O4纳米复合材料,对该复合材料的分散均匀性和结构进行了表征.实验结果显示,Fe3O4粒子在PS基体中分散均匀;包覆油酸的Fe3O4纳米粒子在基体中起到物理和化学交联点的作用,使得聚合物产生交联,并提高了其耐热性. 相似文献
17.
Toshiki Miyazaki Shota Anan Eiichi Ishida Masakazu Kawashita 《Journal of materials science. Materials in medicine》2013,24(5):1125-1129
Recently, organic–inorganic hybrids composed of derivatives of dextran, a polysaccharide, and magnetite nanoparticles have attracted much attention as novel thermoseeds. If they can be fabricated into microspheres of size 20–30 μm, they are expected to show not only hyperthermia effects but also embolization effects in human liver and kidney cancers. In this study, we examined the fabrication of carboxymethyldextran/magnetite microspheres using a water/oil emulsion as the reaction medium. Improvement of the chemical stability of the microcapsules by coating with silica using a sol–gel process was also investigated. The obtained hollow microspheres contained particles of size 20–30 μm. Silica coating using an appropriate catalyst for hydrolysis and polycondensation of alkoxysilanes was found to be effective for preventing dissolution and collapse in simulated body environments. 相似文献
18.
Gehan M.K.Tolba Nasser A.M.Barakat A.M.Bastaweesy E.A.Ashour Wael Abdelmoez Mohamed H.El-Newehy Salem S.Al-Deyab Hak Yong Kim 《材料科学技术学报》2015,(1):97-105
Metal oxides have a higher chemical stability in comparison to metals,so they can be utilized as electrocatalysts if the activity could be enhanced.Besides the composition,the morphology of the nanostructures has a considerable impact on the electrocatalytic activity.In this work,zinc oxide nano branches-attached titanium dioxide nanofibers were investigated as an economic and stable catalyst for ethanol electrooxidation in the alkaline media.The introduced material has been synthesized by electrospinning process followed by hydrothermal technique.Briefly,electrospinning of colloidal solution consisting of titanium isopropoxide,poly(vinyl acetate) and zinc nanoparticles was performed to produce nanofibers embedding solid nanoparticles.In order to produce TiO_2 nanofibers containing ZnO nanoparticles,the obtained electrospun nanofiber mats were calcined in air at 600 °C.The formed ZnO nanoparticles were exploited as seeds to outgrow ZnO branches around the TiO_2 nanofibers using the hydrothermal technique at sub-critical water conditions in the presence of zinc nitrate and bis-hexamethylene triamine.The morphology of the final product,as well as the electrochemical measurements indicated that zinc nanoparticles content in the original electrospun nanofibers has a significant influence on the electrocatalytic activity as the best performance was observed with the nanofibers synthesized from electrospun solution containing 0.1 g Zn,and the corresponding current density was 37 mA/cm~2.Overall,this study paves a way to titanium dioxide to be exploited to synthesize effective and stable metal oxide-based electrocatalysts. 相似文献
19.
S. Heinemann T. CoradinH. Worch H.P. WiesmannT. Hanke 《Composites Science and Technology》2011,71(16):1873-1880
The combination of silica and collagen was identified in natural composites and recently recognized to be a valuable system for the preparation of innovative biomaterials for bone substitution applications. The present study reports on the development of silica/collagen composites, investigation of the underlying formation processes as well as further interactions with hydroxyapatite as a third phase. The possibilities and limitations of the material concept based on the sol-gel strategy were screened and characteristic composition ranges were identified. The gelation determining the processing time is strongly linked to the pH of silicic acid and collagen suspension mixtures as well as the buffer used and collagen concentration. The templating activity of collagen for silica formation is driven by primary amine groups as suggested by biochemical analysis and scanning electron microscopy. A high solid concentration in the initial hydrogels is essential in order to maintain the sample shape during transformation into monolithic and compact xerogels. The presence of fibrillar collagen significantly enhances the compressive strength of the xerogels up to 200 MPa and strain to fracture of up to 11%. The modular concept of the composite xerogel formation process allows incorporation of further phases such as calcium phosphate phases or prospectively drugs for the treatment of local or systemic diseases, opening large perspectives for the development of multifunctional bone implants. 相似文献
20.
Suk Bon Yoon Kuen-Woo Lee Jei-Kwon Moon Yong Suk Choi 《Journal of Experimental Nanoscience》2014,9(3):221-229
Hard template-based fabrication of mesoporous carbon unavoidably goes through the removal process of the template to generate template-free carbon replica, including troublesome disposal of template waste often accompanied by toxic etchant, which not only increases the fabrication cost of materials but also raises serious environmental concerns. As a novel strategy to overcome such problem, a direct in situ synthesis approach using silica waste in carbon/silica nanocomposite as a silica source and cetyltrimethylammonium bromide as a porogen under basic condition is reported in this study for the generation of a new composite composed of mesoporous MCM-41 silica and hollow carbon capsule. The resultant MCM-41/carbon capsule composite offers a 3-D interconnected multimodal pore system, which discloses a wide pore range of ordered uniform mesopores (ca 2.3?nm) resulting from MCM-41 silica and disordered uniform mesopores (ca 3.8?nm) and macropores (ca 300?nm) from hollow mesoporous carbon, respectively. The composite has a high specific surface area (ca 909?m2/g) and large pore volume (ca 0.73?cm3/g). The in situ transformation approach of silica waste into valuable mesoporous silica is considered as a promising scalable route for efficient new multi-functional composites useful for a wide range of applications such as adsorption of volatile organic compounds and radioactive wastes produced in a nuclear facility. 相似文献