首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graminivorous species of grasshoppers develop lethal lesions in their midgut epithelia when they ingest tannic acid, whereas polyphagous grass- hoppers are unaffected by ingested tannins. This study tests the hypothesis that polyphagous species are defended by higher activities of antioxidant enzymes (constitutive or inducible) in their guts than are graminivorous species. Comparisons were made between four antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX), and glutathione transferase peroxidase (GSTPX). Enzyme activities were measured in the gut lumens and midgut tissues of Melanoplus sanguinipes (polyphagous) and Aulocara ellioti (graminivorous). The results of this study do not support the hypothesis that M. sanguinipes is better defended by antioxidant enzymes than is A. ellioti, nor are these enzymes more inducible in M. sanguinipes than in A. ellioti when insects consume food containing 15% dry weight tannic acid. Instead, tannic acid consumption reduced SOD, APOX, and GSTPX activities in both species. This study reports the first evidence that SOD is secreted into the midgut lumen in insects, with activities two- to fourfold higher than those found in midgut tissues. The spatial distribution of GSTPX and APOX activities observed in both species suggests that ingested plant antioxidant enzymes may function as acquired defenses in grasshoppers. In addition, the results of this study permit the first comparison between the antioxidant enzyme defenses of Orthoptera and Lepidoptera. Most notably, grasshoppers have higher SOD activities than caterpillars, but completely lack APOX in their midgut tissues.  相似文献   

2.
Polyphagous grasshoppers consume plants that contain markedly greater amounts of potentially prooxidant allelochemicals than the grasses eaten by graminivorous grasshoppers. Therefore, levels of antioxidant defenses maintained by these herbivores might be expected to differ in accordance with host plant ranges. Antioxidant levels were compared in midgut tissues and gut fluids of a polyphagous grasshopper, Melanoplus sanguinipes, and a graminivorous grasshopper, Aulocara ellioti. Glutathione concentrations in midgut tissues of M. sanguinipes (10.6 mM) are among the highest measured in animal tissues and are twice as high as those in A. ellioti. -Tocopherol levels are 126% higher in midgut tissues of M. sanguinipes than in those of A. ellioti, and remain at high levels when M. sanguinipes is reared on plants containing a wide range of -tocopherol concentrations. Ascorbate levels in M. sanguinipes midgut tissues are 27% higher than in those of A. ellioti, but vary depending on the host plant on which they are reared. Midgut fluids of both species contain elevated levels of glutathione, as well as large (millimolar) amounts of undetermined antioxidants that are produced in the insects. The consumption of tannic acid decreases ascorbate concentrations in midgut tisssues and gut fluids of A. ellioti but has no effect on ascorbate levels in M. sanguinipes. The results of this study provide the first measurements of antioxidants in grasshoppers and suggest that the maintenance of high levels of antioxidants in the midgut tissues of polyphagous grasshoppers might effectively protect them from oxidative stress.  相似文献   

3.
High foliar phenolics are generally assumed to increase resistance to insect herbivores, but recent studies show that tobacco lines modified to over– and underexpress phenolics do not exhibit higher constitutive resistance to caterpillars. This is contrary to the expectation that ingestion of tobacco phenolics, particularly chlorogenic acid, should cause oxidative stress in herbivores. We investigated free radical production and antioxidant capacity of fresh crushed leaves of tobacco lines exhibiting over a sixfold difference in chlorogenic acid content to test whether high phenolic concentrations are associated with increased production of reactive oxygen species (ROS). The effects of in planta phenolic levels on feeding behavior, growth, biochemical markers of oxidative stress, and the antioxidant capacity of midgut fluid and hemolymph were assessed in tobacco budworm, Heliothis virescens. The experiments showed that high phenolic foliage was more prooxidant than low phenolic foliage, but the net balance in crushed tissue was antioxidant in comparison to buffer and the commercial antioxidant standard, Trolox. In H. virescens, the antioxidant capacity of midgut fluid was also powerful, and caterpillars fed high phenolic foliage did not exhibit the expected markers of oxidative stress in midgut tissues (altered ascorbate ratios, disulfides, or total hydroperoxides). Instead, hemolymph of larvae fed high phenolic foliage exhibited improved total Trolox equivalent antioxidant capacity (TEAC). These results suggest that the elevated foliar phenolics in some plants may have beneficial antioxidant properties for herbivorous insects, much as dietary phenolics do in mammals.  相似文献   

4.
Phenolic compounds are generally believed to be key components of the oxidative defenses of plants against pathogens and herbivores. However, phenolic oxidation in the gut fluids of insect herbivores has rarely been demonstrated, and some phenolics could act as antioxidants rather than prooxidants. We compared the overall activities of the phenolic compounds in red oak (Quercus rubra) and sugar maple (Acer saccharum) leaves in the midgut fluids of two caterpillar species, Malacosoma disstria (phenolic-sensitive) and Orgyia leucostigma (phenolic-tolerant). Three hypotheses were examined: (1) ingested sugar maple leaves produce higher levels of semiquinone radicals (from phenolic oxidation) in caterpillar midgut fluids than do red oak leaves; (2) O. leucostigma maintains lower levels of phenolic oxidation in its midgut fluids than does M. disstria; and (3) phenolic compounds in tree leaves have overall prooxidant activities in the midgut fluids of caterpillars. Sugar maple leaves had significantly lower ascorbate:phenolic ratios than did red oak leaves, suggesting that phenolics in maple would oxidize more readily than those in oak. As expected, semiquinone radicals were at higher steady-state levels in the midgut fluids of both caterpillar species when they fed on sugar maple than on red oak, consistent with the first hypothesis. Higher semiquinone radical levels were also found in M. disstria than in O. leucostigma, consistent with the second hypothesis. Finally, semiquinone radical formation was positively associated with two markers of oxidation (protein carbonyls and total peroxides). These results suggest that the complex mixtures of phenolics in red oak and sugar maple leaves have overall prooxidant activities in the midgut fluids of M. disstria and O. leucostigma caterpillars. We conclude that the oxidative defenses of trees vary substantially between species, with those in sugar maple leaves being especially active, even in phenolic-tolerant herbivore species.  相似文献   

5.
The seasonal decline in foliar nutritional quality in deciduous trees also effects the availability of essential micronutrients, such as ascorbate and -tocopherol, to herbivorous insects. This study first examined whether there are consistent patterns of seasonal change in antioxidant concentrations in deciduous tree leaves. -Tocopherol concentrations increased substantially through time in late summer in sugar maple (Acer saccharum), red oak (Quercus rubra), and trembling aspen (Populus tremuloides). However, seasonal change in the concentrations of other antioxidants differed between each species: P. tremuloides had higher levels of ascorbate and glutathione in the spring, Q. rubra had higher levels of glutathione but lower levels of ascorbate in the spring, and A. saccharum had lower levels of both ascorbate and glutathione in the spring. To test the hypothesis that tannin-tolerant caterpillars maintain higher concentrations of antioxidants in their midgut fluids than do tannin-sensitive species, we measured antioxidants in Orgyia leucostigma (a spring- and summer-feeding, tannin-tolerant species) and Malacosoma disstria (a spring-feeding, tannin-sensitive species) that were fed tree leaves in the spring and summer. The midgut fluids of O. leucostigma larvae generally had higher concentrations of antioxidants in the summer than did those of M. disstria, and were significantly higher overall. The results of this study are consistent with the hypothesis that higher concentrations of antioxidants form an important component of the defenses of herbivores that feed on mature, phenol-rich tree leaves. Some limitations of the interpretation of total antioxidant capacity are also discussed.  相似文献   

6.
We examined several of the mechanisms that have been reported to enable polyphagous grasshoppers (Orthoptera: Acrididae) to tolerate ingested hydrolyzable tannins: hydrolysis, adsorption on the peritrophic envelope, and peritrophic envelope impermeability. None of these mechanisms explain the tolerance ofMelanoplus sanguinipes to ingested tannic acid. In this species, tannin hydrolysis was 12–47% complete, adsorption accounted for less than 1% of the tannic acid contained in the midgut, and the peritrophic envelope was permeated by several gallotannins. The foregut is the main site for the chemical transformation of tannic acid in this species. InPhoetaliotes nebrascensis, hydrolysis was more extensive (82% complete), but the peritrophic envelope was readily permeated by two gallotannins. Oxidizing redox conditions were found in the guts of both species, and ingested tannins were oxidized inM. sanguinipes. We hypothesize that the tolerance of some polyphagous grasshoppers to ingested hydrolyzable tannins may be the consequence of their ability to tolerate the reactive oxygen species generated by polyphenol oxidation, whereas others may rely on rapid and extensive hydrolysis.  相似文献   

7.
The effect of volatiles related to feeding activity of nonprey caterpillars, Spodoptera exigua, on the olfactory response of the predatory mites Phytoseiulus persimilis was examined in a Y-tube olfactometer. At a low caterpillar density (20 caterpillars on 10 Lima bean leaves), the predators were significantly more attracted to volatiles from infested leaves on which the caterpillars and their products were present or from infested leaves from which the caterpillars and their products had been removed when compared to volatiles from uninfested leaves. The predators, however, significantly avoided odors from 20 caterpillars and their products (mainly feces) removed from bean leaves. In contrast, at a higher caterpillar density (100 caterpillars on 10 Lima bean leaves), the predators avoided volatiles from caterpillar-infested bean leaves. Volatiles from infested leaves from which the caterpillars and their products had been removed were not preferred over volatiles from uninfested leaves. Volatiles from feces collected from 100 caterpillars were strongly avoided by the predators, while the behavior of the predatory mites was not affected by volatiles from 100 caterpillars removed from a plant. The data show that carnivorous arthropods may avoid nonprofitable herbivores. This avoidance seems to result from an interference of volatiles from herbivore products with the attraction to herbivore-induced plant volatiles.  相似文献   

8.
It is predicted that enemies of insect herbivores may influence the effects of herbivores on their host plants by affecting the choice of plant genotypes. To examine the effect of predators, we conducted two experiments, each with a different caterpillar species (Junonia coenia and Pyrrharctia isabella). Under seminatural conditions, we provided a choice between two genotypes of plantain (Plantago lanceolata) with different levels of iridoid glycosides and used Podisus maculiventris stinkbugs as predators. There were four treatments: no herbivores and no predators, low density of herbivores and no predators, high density of herbivores and no predators, and high density of herbivores plus predators. The caterpillars had little effect on plant growth but did influence the iridoid glycoside concentration. For the Junonia experiment, the concentration of iridoid glycosides was less for plots with a low density of caterpillars (with no predators) compared to the other treatments of caterpillar density. In the Pyrrharctia experiment, catalpol was induced by a high density of caterpillars (with no predators). There were no increases in total iridoid glycosides associated with either herbivore species. The presence of predators had no effect on plant growth or total iridoid glycoside pattern. The lack of effect by predators seems to reflect the relatively large variation in iridoid glycoside concentration among leaf ages, and the herbivores ability to respond to that variation, such that the difference in iridoid glycoside concentrations in the plant genotypes was less important.  相似文献   

9.
We evaluated whether velvetbean caterpillars (Anticarsia gemmatalis) from a laboratory colony had reduced constitutive (basal) and/or induced activities of their polysubstrate monooxygenase (PSMO) detoxification enzyme system as a result of long-term rearing (> 100 generations) on artificial diet without introduction of field-collected individuals. Larvae from the laboratory colony and those from a recently collected field strain were fed either a standard artificial diet (control), one containing the inducing allelochemical, flavone, or foliage ofIndigofera hirsuta (a host plant of this species), and their midgut PSMO activity was assessed by measuring the in vitro rate of aldrin epoxidation. Compared with the field-strain larvae, caterpillars from the laboratory colony had 1.9-fold greater constitutive activity (standard artificial diet) and 2.3-fold greater induced activity (flavone-treated diet). In addition, the magnitude of induction was somewhat greater for the laboratory-colony larvae (induced activity was 2.0-fold greater than constitutive activity) compared with those from the field-strain (1.6-fold). In contrast, no difference in strain activity was found when larvae were fedI. hirsuta foliage. The lower PSMO activity of the field-strain larvae when fed artificial diet may have been caused by their reduced feeding and growth performance compared with laboratory-colony larvae, and it may explain their greater sensitivity to allelochemicals incorporated in the artificial diet, as we found previously. The results of this study indicate that long-term rearing of theA. gemmatalis laboratory colony on artificial diet, without the introduction of field individuals, apparently has not selected for low constitutive activity or decreased inducibility of PSMO, and thus these larvae provide a suitable model for studying xenobiotic detoxication. In addition, they suggest that using an artificial diet to evaluate resistance to pesticides or other xenobiotics in fieldcollected insects, as is frequently done, may underestimate the level of resistance if the diet, through various causes, reduces the activity of detoxification enzymes contributing to the resistance.  相似文献   

10.
Expression of the Bacillus thuringiensis beetle-specific toxin Cry3Aa, which renders a genetically modified potato cultivar resistant to the Colorado potato beetle Leptinotarsa decemlineata, exerts a deleterious effect on the polyphagous moth Spodoptera littoralis. The caterpillars of S. littoralis feed less and produce smaller pupae on the genetically modified cultivar (NewLeaf Superior) than on the parental nontransgenic cultivar (Superior). The conversion efficiencies of total dry matter, combustion heat, carbon, and nitrogen from leaves to insect biomass are similar on both cultivars. In spite of similar food utilization and a relatively small difference in the body mass at pupation, female adults that developed from caterpillars fed on NewLeaf Superior lay a mean of 309 eggs compared to a mean of 713 eggs deposited by females that developed from caterpillars fed on Superior. Because of this difference and a simultaneous reduction in fertility (egg hatchability) from 78 to 48%, a pair of adults that fed as larvae on NewLeaf Superior produces only 148 larvae, whereas a pair of adults that fed as larvae on Superior produces 556 larvae. We suggest that small amounts of Cry3Aa that accumulate in insect tissue and persist until the adult stage are responsible for the decline in reproduction.  相似文献   

11.
Interactions between insects and glucosinolate-containing plant species have been investigated for a long time. Although the glucosinolate–myrosinase system is believed to act as a defense mechanism against generalist herbivores and fungi, several specialist insects use these secondary metabolites for host plant finding and acceptance and can handle them physiologically. However, sequestration of glucosinolates in specialist herbivores has been less well studied. Larvae of the turnip sawfly Athalia rosae feed on several glucosinolate-containing plant species. When larvae are disturbed by antagonists, they release one or more small droplets of hemolymph from their integument. This reflex bleeding is used as a defense mechanism. Specific glucosinolate analysis, by conversion to desulfoglucosinolates and analysis of these by high-performance liquid chromatography coupled to diode array UV spectroscopy and mass spectrometry, revealed that larvae incorporate and concentrate the plant's characteristic glucosinolates from their hosts. Extracts of larvae that were reared on Sinapis alba contained sinalbin, even when the larvae were first starved for 22 hr and, thus, had empty guts. Hemolymph was analyzed from larvae that were reared on either S. alba, Brassica nigra, or Barbarea stricta. Leaves were analyzed from the same plants the larvae had fed on. Sinalbin (from S. alba), sinigrin (B. nigra), or glucobarbarin and glucobrassicin (B. stricta) were present in leaves in concentrations less than 1 mol/g fresh weight, while the same glucosinolates could be detected in the larvae's hemolymph in concentrations between 10 and 31 mol/g fresh weight, except that glucobrassicin was present only as a trace. In larval feces, only trace amounts of glucosinolates (sinalbin and sinigrin) could be detected. The glucosinolates were likewise found in freshly emerged adults, showing that the sequestered phytochemicals were transferred through the pupal stage.  相似文献   

12.
The Indian gypsy moth, Lymantria obfuscata (Lepidoptera: Lymantriidae), has been recognized as a distinct species since 1865 but closely resembles a diminutive form of gypsy moth, Lymantria dispar. We tested the hypothesis that the sex pheromones of L. obfuscata and L. dispar are similar. In laboratory mate acceptance studies, very few male L. dispar made copulatory attempts when paired with female L. obfuscata, suggesting that female L. obfuscata emit one or more pheromone components antagonistic to male L. dispar. In coupled gas chromatographic–electroantennographic detection (GC–EAD) analyses of pheromone gland extract of female L. obfuscata, (Z)-2-methyloctadec-7-ene (2Me-7Z-18Hy) and (7R,8S)-cis-7,8-epoxy-2-methyloctadecane [(+)-disparlure] were most abundant and elicited the strongest responses from male L. obfuscata antennae. In field experiments near Solan (Himachal Pradesh, India), 2Me-7Z-18Hy and (+)-disparlure in combination attracted more male L. obfuscata than did either component alone. This two-component sex pheromone contrasts with the single-component sex pheromone [(+)-disparlure] of L. dispar. The contrasting composition of the lymantriid communities inhabited by L. obfuscata and L. dispar may explain why 2Me-7Z-18Hy is a pheromone component in L. obfuscata and a pheromone antagonist in L. dispar and why (−)-disparlure reduces pheromonal attraction of male L. dispar but not male L. obfuscata.  相似文献   

13.
Specialist insect herbivores that sequester allelochemicals from their host plants may be unpalatable to potential predators. However, the host-plant species used may determine the degree of palatability. Spiders, including members of the family Lycosidae, are important predators of invertebrate prey. We fed buckeye caterpillars, Junonia coenia (Nymphalidae), reared on Plantago lanceolata (containing high levels of iridoid glycosides) or P. major (containing low levels of iridoid glycosides) to prairie wolf spiders, Lycosa carolinensis (Lycosidae), to determine whether the spiders found insects that sequester iridoid glycosides unpalatable. In a field experiment, spiders ate caterpillars reared on P. major significantly more often than caterpillars reared on P. lanceolata, although they attacked equal numbers of both types of prey. Spiders that bit caterpillars behind their heads or along the middle of their backs prevented caterpillars from implementing deterrent defensive strategies such as regurgitating or defecating. In a laboratory experiment, we presented spiders with P. lanceolata-reared and P. major-reared caterpillars simultaneously for eight consecutive trials. Spiders consumed P. major-reared buckeyes significantly more often than P. lanceolata-reared caterpillars. We found no evidence that the spiders learned to avoid the unpalatable prey.  相似文献   

14.
Using a colorimetric procedure, we assessed the HCN-p of black cherry leaves (Prunus serotina) ingested by the eastern tent caterpillar, Malacosoma americanum, and the cyanide content of the bolus as it passed thorough the caterpillar's digestive tract and into the detritus pool. The mean HCN-p of leaves in our study area was 1902 ± 174 (SE) ppm. Young leaves found at the tips of growing branches, which the caterpillars preferred, had a significantly higher HCN-p (3032 ± 258 ppm) than older leaves found at the middle (1542 ± 243 ppm) or base of the shoot (1131 ± 159 ppm). Following a bout of overnight feeding on young leaves, the cyanide content of the foregut and midgut boluses of early sixth-instar caterpillars averaged 631 ± 161 ppm, and 14 ± 3 ppm, respectively, indicating that host-derived cyanide is rapidly depleted as the bolus transits the gut. Some cyanide, however, remains. In three studies, the mean cyanide content of fresh fecal pellets ranged from approximately 20 to 38 ppm, while the dried, compacted pellets ranged from 63 to 85 ppm. Food in the foreguts of mature caterpillars dispersing over the ground in search of pupation sites had 417 ± 99 ppm cyanide. The potential impact of this egested and caterpillar-transported cyanide on the consumer and detritivore communities is discussed.  相似文献   

15.
Cotton,Gossypium hirsutum L., has been shown to exhibit systemic induced resistance to arthropods under certain conditions. We conducted experiments to determine the effects of previous feeding ofSpodoptera exigua Hübner andSpodoptera littoralis (Boisd.) larvae on feeding behavior, growth, and survival of larvae subsequently feeding on cotton. In one feeding choice test,S. exigua larvae preferred young leaves from undamaged control plants to undamaged young leaves from a previously damaged plant. Feeding deterrence was noticeable after only 6 hr of initial feeding damage by larvae, and there was almost complete deterrence after 30 and 54 hr of continuous feeding. In a second feeding choice test,S. littoralis larvae fed more on mature leaves from undamaged control plants than on undamaged mature leaves from previously damaged plants. In no-choice tests, third instars ofS. littoralis fed undamaged young leaves from damaged plants did not gain weight and died by the seventh day, whereas larvae fed young leaves from undamaged control plants gained weight and pupated within 11 days. Sixth instars ofS. littoralis fed either old damaged leaves, old undamaged leaves, or young undamaged leaves all from previously damaged plants gained weight slowly and took more than 12 days to pupate, whereas larvae fed young leaves from undamaged plants gained weight rapidly and pupated within five days of the beginning of the experiment.  相似文献   

16.
We examined the effects of a set of four biosynthetically related iridoid glycosides, aucubin, catalpol, loganin, and asperuloside, on larvae of a generalist,Lymantria dispar (Lymantriidae), the gypsy moth, and an adapted specialist, the buckeye,Junonia coenia (Nymphalidae). In general,L. dispar grew and survived significantly less well on artificial diets containing iridoid glycoside, compared to a control diet without iridoid glycosides. In choice tests, previous exposure to a diet containing iridoid glycosides caused larvae subsequently to prefer iridoid glycoside-containing diets even though they were detrimental to growth and survival. In contrast,J coenia larvae grew and survived better on diets with aucubin and catalpol, the two iridoid glycosides found in the host plantPlantago lanceolata (Plantaginaceae), than on diets with no iridoid glycoside or with loganin and asperuloside. The results of choice tests of diets with and without iridoid glycosides and between diets with different iridoid glycosides reflected these differences as well. These results are discussed in terms of (1) differences between generalists and specialists in their response to qualitative variation in plant allelochemical content, (2) the induction of feeding preferences, and (3) the evolution of qualitative allelochemical variation as a plant defense.  相似文献   

17.
Large interspecific differences in redox potential exist among herbivorous lepidopteran larvae. Reducing conditions occur in the midguts ofManduca sexta (Sphingidae) andPolia latex (Noctuidae), whereas oxidizing conditions prevail in the midguts ofLymantria dispar (Lymantriidae),Danaus plexippus (Danaidae), andPapilio glaucus (Papilionidae). The epithelium of the posterior midgut ofM. sexta fed a diet containing bismuth subnitrate accumulates bismuth sulfide, suggesting that sulfide might be one of the reducing agents responsible for the maintenance of reducing conditions in this species. We propose that the effects of plant allelochemicals in insect herbivores will be strongly affected by gut redox conditions and that the regulation of gut redox conditions is an important adaptation of insect herbivores to the chemical defenses of plants. The redox state of the gut is yet another insect trait that must be included in the analysis of plant-insect interactions.  相似文献   

18.
Insects that feed on plants protected by latex canals often sever leaf veins or cut trenches across leaves before feeding distal to the cuts. The insects thereby depressurize the canals and reduce latex exudation at their prospective feeding site. How the cuts affect the distribution and concentration of latex chemicals was not known. We modified a microwave-assisted extraction technique to analyze the spatial distribution of alkaloids in leaves of Lobelia cardinalis (Campanulaceae) that have been trenched by a plusiine caterpillar, Enigmogramma basigera (Lepidoptera: Noctuidae). We produced sharp two dimensional maps of alkaloid distribution by microwaving leaves to transfer alkaloids to TLC plates that were then sprayed with Dragendorff’s reagent to visualize the alkaloids. The leaf prints were photographed and analyzed with image processing software for quantifying alkaloid levels. A comparison of control and trenched leaves documented that trenching reduces alkaloid levels by approximately 50% both distal and proximal to the trench. The trench becomes greatly enriched in alkaloids due to latex draining from surrounding areas. Measurements of exudation from trenched leaves demonstrate that latex pressures are rapidly restored proximal, but not distal to the trench. Thus, the trench serves not only to drain latex with alkaloids from the caterpillar’s prospective feeding site, but also to isolate this section, thereby preventing an influx of latex from an extensive area that likely extends beyond the leaf. Microwave-assisted extraction of leaves has potential for diverse applications that include visualizing the impact of pathogens, leaf miners, sap-sucking insects, and other herbivores on the distribution and abundance of alkaloids and other important defensive compounds.  相似文献   

19.
Hypochlora alba is a specialist grasshopper that lives and feeds almost exclusively onArtemisia ludoviciana, a plant that produces large amounts of allelochemics including a variety of monoterpenes. This plant is not a host for generalist grasshoppers such asMelanoplus sanguinipes. The role of olfaction in the grasshopper-plant relationship was investigated by comparing electroantennograms (EAGs) of males and females of both species generated by solvent-extracted volatiles from plant leaves and by major individual components. Volatiles ofA. ludoviciana were identified by gas chromatography-mass spectrometry. The major components were 1,8-cineole, camphor, camphene, and borneol, while minor identified compounds were - and -pinene, -thujene, myrcene,p-cymene, Artemisia ketone, -thujone, and bornyl acetate. The EAGs (mV) ofH. alba males to a range of concentrations of individual volatiles or the total plant extract were nearly double those of conspecific females or both sexes ofM. sanguinipes. However, both sexes ofM. sanguinipes were more sensitive than either sex ofH, alba to geraniol, a monoterpene that commonly occurs in many plant species but is absent or is present in only trace amounts inA. ludoviciana. The increased sensitivity ofH. alba males to the odor components of their host plant appears to be related to the greater number of certain olfactory chemoreceptors on male versus female antennae. The significance of this phenomenon is discussed.  相似文献   

20.
The foliage of sweetbay magnolia (Magnolia virginana) contains at least two biologically active phenylpropanoid compounds (magnolol and a biphenyl ether) that are toxic to a number of generalist insect herbivores. These compounds have little effect on caterpillars of the sweetbay silkmoth, C. securifera, which is a specialist on sweetbay, but they are toxic to two closely related silkmoths, C. angulifera and C. promethea. To understand the influence of phytochemistry on the evolution of host use and feeding specialization in Callosamia, the detoxification capability of C. securifera was compared with that of C. angulifera and C. promethea. Degradation of magnolol and the biphenyl ether by midgut homogenate of the sweetbay specialist was NADPH-dependent and inhibited by piperonyl butoxide, suggesting the involvement of cytochrome P-450 detoxification enzymes. Both were degraded three times faster in the specialist compared to the unadapted herbivores. Higher rates of degradation could not be induced in the polyphagous C. promethea by a mixture of magnolol and the biphenyl ether or by the P-450 inducer pentamethylbenzene, nor did activity vary significantly when larvae were reared on different host plants. Use of sweetbay by Callosamia silkmoths appears to be dependent on their ability to degrade host toxins rapidly via midgut detoxification enzymes. Moreover, the intraspecific comparisons contradict the common prediction that higher levels of cytochrome P-450 activity are found in more polyphagous species; instead, P-450 activity is more closely associated with specific chemical attributes of the herbivores' host plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号