共查询到16条相似文献,搜索用时 78 毫秒
1.
针对SIFT(scale invariant feature transform)特征描述符因仅利用特征点的局部邻域信息而对散落在图像内相似结构中的点极易发生误匹配的现象,提出了一种基于空间分布描述符的SIFT误匹配校正方法。该方法首先利用SIFT算法进行匹配;然后对于匹配结果中的特征点,再利用图像轮廓像素点对该点的空间分布信息进行重新描述,以形成一种独特性更高的空间分布描述符;最后运用此种描述符,对匹配结果中存在的“一对多”和“一对一”的错误匹配形式,分别采取两种不同的匹配策略进行校正。以真实图像进行的实验结果表明,该方法与RANSAC(随机抽样一致性)算法相比,其在不损失正确匹配的前提下,能够真正提高正确匹配率。 相似文献
2.
影像匹配是诸多遥感影像处理和影像分析的一个关键环节。传统基于角点的灰度相关匹配算法由于不具备旋转不变性而需要人工干预进行粗匹配,无法实现自动化。SIFT(scale invariant feature transform)算法能很好地解决图像旋转、缩放等问题,但是对于几何结构特征更加清晰、纹理信息更加丰富的高分辨率遥感影像而言,该算法消耗内存多、运算速度慢的问题非常突出。将两者结合,提出基于Harris角点和SIFT描述符的影像匹配算法。实验结果表明,相比SIFT算法,该算法大量缩减了运算时间,同时保留了SIFT描述符的旋转不变性和对光照变化的适应性,克服了灰度相关算法无法实现全自动的缺点,在高分辨率遥感影像匹配上效果较好。 相似文献
3.
一种基于扇形区域分割的SIFT特征描述符 总被引:3,自引:1,他引:3
提出了一种在圆形区域内基于扇形区域分割的特征描述符构建方法. 首先, 针对SIFT描述符维数过高, 导致匹配速度慢的弱点, 提出在半径为9像素的圆形特征区域内划分为8个扇区, 在这些扇形特征邻域内统计8个方向的灰度梯度直方图, 形成64维描述符的方法,降低了描述符的维数. 同时, 针对SIFT构建描述符的运算复杂性较高的事实, 提出在圆形区域内计算像素灰度梯度主方向, 以主方向为基准点把该区域划分为8个等面积扇区的方法, 取消了对特征区域的旋转变换, 降低了构建描述符的运算复杂性. 通过与OpenCV SIFT和Lowe SIFT进行多方面对比实验, 结果表明该方法的综合匹配速度具有显著提升, 在两幅图像存在一定程度的视点、模糊、旋转、比例、光照变化等情形下, 匹配性能有所增强. 相似文献
4.
对SIFT算法进行研究,针对SIFT特征描述符的高维数和高复杂度问题,进行了改进。通过对大量的不同类型的图像进行特征匹配实验,实验结果表明,当图像存在不同程度的几何变形、辐射畸变和噪声影响时,改进后的算法更稳定、更快速。 相似文献
5.
6.
立体匹配是计算机视觉领域最活跃的研究课题之一,针对传统SIFT描述符在图像存在多个相似区域时易造成误匹配和Daisy的匹配效率会因200维的描述符而降低的问题,提出一种SIFT和Daisy相结合的立体匹配算法。该方法利用SIFT算法生成关键特征点,利用Daisy描述符自身具有的良好的旋转不变性,对特征点进行描述,利用特征描述符欧氏距离的最近邻匹配和种子区域增长得到视差图。实验结果表明,该方法匹配精度高,速度快,在部分遮挡、视点变化引起的图像变形等问题上有更好的表现。 相似文献
7.
SIFT(Scale Invariant Feature Transform)是目前最流行的局部特征提取及匹配算法.但传统SIFT算法采用欧氏距离来度量特征之间的SSD(Sum of Square Differences)并进行匹配,而传统的欧氏距离不能使高维特征向量恢复到具有低维的几何结构,导致错误匹配.为了克服这缺点,利用扩散距离代替欧氏距离进行匹配,然后使用随机抽样一致从候选匹配中排除错误的匹配.实验表明:该方法在图像形变、光照变化和图像噪声方面优于原方法. 相似文献
8.
9.
针对传统SIFT算法在匹配时出现实时性差、匹配量低以及RANSANC算法在剔除SIFT误匹配对时误匹配率高的问题,提出一种基于距离相对性的分块匹配算法和基于仿射不变性的误匹配对剔除算法。首先利用传统SIFT算法提取图像中的特征点;然后采用基于距离相对性的分块匹配算法进行特征匹配得到初始匹配对;由于初始匹配对中存在误匹配,接下来运用基于仿射不变性的误匹配对剔除算法来剔除误匹配对;最后,在不同图像变换下进行仿真实验。实验结果表明,算法在保持SIFT算法鲁棒性的基础上,能够得到更多匹配对,正确匹配率提高了10%左右,并且实时性也得到很大改善。 相似文献
10.
针对红外图像拼接误匹配点过多、耗时过长等问题, 对基于SIFT算法的红外图像拼接方法进行改进. 首先利用高斯差分金字塔建立尺度空间, 然后利用FAST算法对高斯差分金字塔图像进行特征点提取, 提高了算法运行效率, 随后以特征向量的欧式距离作为特征点的相似性度量, 从而找到初始匹配点对, 并利用结合了方向一致性判断的Ransac算法剔除错误匹配点对, 最后用加权平衡算法实现图像的快速融合. 通过红外人物图像拼接实验, 证明改进后的算法在旋转、缩放、光照等情况下更稳定、效率更高, 有较大的理论和应用价值. 相似文献
11.
基于SIFT特征描述子的立体匹配算法 总被引:1,自引:0,他引:1
目前,立体匹配是计算机视觉领域最活跃的研究课题之一。为了克服传统的局部特征匹配算法对噪声和图像灰度的非线性变换敏感的缺点,本文提出了一种新的基于SIFT(Scale Invariant Feature Transform)特征描述子的立体匹配算法。该算法利用图像梯度信息,构造基于三维梯度方向直方图的SIFT特征描述子作为区域特征描述符,通过立体视觉理论中的极线约束将匹配特征的搜索空间从二维降到一维,最后以基于特征描述子欧氏距离的最近邻匹配得到匹配结果。实验结果表明,该方法匹配精度高,对图像灰度的非线性变换比较鲁棒,可以应用于对匹配算法鲁棒性要求比较高的立体视觉系统中。 相似文献
12.
13.
14.
15.
16.
高独特性特征的选择以及合适匹配策略的选用是人脸识别技术的关键。讨论了基于仿射不变的几何特征SIFT算子进行人脸识别的方法。SIFT算子的计算复杂度较高,并且不同的人脸表情和图像模糊会加大特征匹配的难度。为克服上述缺点,提出了一种新的算法,将选择6个人脸上感兴趣子区域进行描述,并根据各自的独特性赋予不同的权值,最后在匹配过程中使用相似度的平方来减小偏差数据造成的影响。实验结果表明,该方法能有效减轻表情变化对于身份识别率急剧下降的影响,并可显著减少计算复杂度和特征匹配时间。 相似文献