首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
建立磁流体润滑机床主轴滑动轴承的弹流润滑模型,并进行弹流润滑数值模拟分析.探讨载荷和速度对磁流体润滑膜压力和膜厚的影响.分析结果表明:在磁流体润滑条件下,当转速不变时,压力峰值随着载荷的增大而增大,入口区压力、膜厚及最小膜厚随载荷的增大而减小;当载荷不变时,压力随着速度的增加没有明显变化,膜厚及最小膜厚都随速度增大而增加.  相似文献   

2.
《机械传动》2016,(5):105-109
利用考虑惯性力的Reynolds方程,对水润滑飞龙滑动轴承进行流体润滑数值分析。探讨不同载荷、转速以及表面粗糙度对压力和膜厚的影响,并与不考虑流体惯性力的热弹流解进行对比。结果表明,考虑流体惯性力的影响时,入口区压力增大,压力峰值有所减小,中心膜厚与最小膜厚均增大;随着载荷的增大,压力峰值增大,入口区的压力和膜厚减小;随着转速的增大,压力峰值减小,入口区压力及润滑膜膜厚增大;轴承表面粗糙度使得压力和膜厚均出现了连续波动,压力峰值增大,最小膜厚减小。  相似文献   

3.
研究接触区的当量曲率半径对弹流油膜性质的影响,利用多重网格法求得非稳态弹流润滑问题。得到了接触固体两种等效曲率半径下的热弹流润滑数值解。数值模拟的结果显示最小膜厚的变化与Hamrock和Dowson的点接触弹流润滑的最小膜厚公式一致。在其他参数不变的情况下,曲率半径增加一倍,油膜的压力大约减小一倍,其第二压力峰变钝变宽;而膜厚增大,但其增加的幅度相比压力的增加要小很多;而温度的变化减小。  相似文献   

4.
乳化液润滑轧辊轴承的弹流润滑分析   总被引:1,自引:0,他引:1  
建立乳化液润滑轧辊轴承的数学模型,分别在等温和热条件下对乳化液润滑轧辊轴承的弹流润滑问题进行数值模拟,讨论轧制力和转速对乳化液润滑膜压力和膜厚的影响。结果表明:等温条件下,当轧制力一定时,随着转速的增加第二压力峰增大,而膜厚及最小膜厚都增大;随着轧制力的增大,压力峰值有显著增大,但在入口区压力、膜厚及最小膜厚减小。热条件下,随着轧制力增大,膜厚和最小膜厚逐渐减小,而对压力几乎没有影响;随着转速的增大,膜厚和最小膜厚逐渐增大,压力逐渐减小,第二压力峰也逐渐降低甚至消失。  相似文献   

5.
考虑惯性力的水基磁流体润滑滑动轴承热弹流润滑分析   总被引:1,自引:0,他引:1  
基于考虑惯性力的雷诺方程,对水基磁流体润滑滑动轴承进行热弹流润滑分析,并与未考虑惯性力的热弹流数值解进行比较。结果表明:水基磁流体在考虑惯性力时,入口区压力和膜厚相应增大,压力峰相应减小;随着载荷的增大,水基磁流体润滑膜的膜厚和入口区压力减小,压力峰增大;随着速度的增大,水基磁流体膜厚和入口区压力增大,而压力峰减小。  相似文献   

6.
建立无限长滚子与平面的线接触等温弹流脂润滑模型,采用多重网格法研究纯滚工况下载荷和卷吸速度对润滑油膜特性的影响;采用多功能双色光弹流润滑油膜测量实验台,在相应工况下进行变载荷和变速度实验研究。数值模拟结果表明,较大的载荷可以获得更大的压力和更小的膜厚,较大的速度则主要提升了二次压力峰并增大了膜厚。实验结果表明:随着载荷的增大,整体膜厚、最小膜厚和中心膜厚均先增大后减小,但载荷较小时出现了最小膜厚和中心膜厚实验值和理论模拟值不一致的变化趋势,这可能是数值模拟分析时稳态假设与实际润滑脂流变特性、时变特性及润滑机制不符造成的;随着速度的增大整体膜厚、最小膜厚和中心膜厚都线性增大,且实验值与理论模拟值有较高的一致性。  相似文献   

7.
基于线接触热弹流脂润滑数值计算模型,结合单个球状固体颗粒的相关参数进行修正,建立考虑固体颗粒的线接触热弹流脂润滑的数值计算模型。采用多重网格法求解压力、膜厚和润滑油膜平均温升等润滑指标,得到不同颗粒速度、尺寸半径和中心位置下润滑油膜的压力、膜厚及温升分布并进行对比分析。结果表明:润滑脂中的固体颗粒容易造成油膜压力和温升的突变;随着固体颗粒向油膜中心的移动以及中心速度和颗粒半径的增大,压力、膜厚和平均温升整体分布都向入口区移动,其中颗粒半径对油膜压力、膜厚和平均温升的影响尤为显著。因此,在实际工作中应尽可能避免接触区内混入固体颗粒,尤其是半径相对较大的固体颗粒。  相似文献   

8.
基于高速铁路客车轴箱系统多界面接触力学分析模型,在轴箱轴承工况条件下,分析轴箱轴承滚动体与内、外圈间的接触载荷分布情况;建立高速铁路客车轴箱双列圆锥滚子轴承脂润滑弹流模型,并采用有限差分法数值解法。数值计算结果与最小膜厚公式获得的最小膜厚度进行比较,而最大润滑压力与相应的赫兹应力进行了比较。结果表明,在给定运行工况条件下,随着运行速度的增大,轴承滚道润滑接触形成的油膜压力减小,油膜增大;而当轴承载荷增大时,其油膜厚度减小,润滑压力增大。  相似文献   

9.
采用多重网格法和多重网格积分法对水基磁流体润滑轴承进行弹流润滑分析,在雷诺方程中考虑了热、非牛顿、磁场和时变的影响,探讨了粗糙度因素对弹流润滑性能的影响。分析中对比了轴-轴承双面和轴承单面带有正弦粗糙度时的润滑膜膜厚和压力的分布,并研究了双面都带有粗糙度相位不同时润滑膜压力和膜厚的分布。数值分析结果表明,两个表面都存在相同的粗糙度时,在波峰相对处的膜厚更小,压力更大,在波谷相对处的膜厚更大,压力更小;随着一个表面的粗糙峰远离另一个表面的粗糙峰时,膜厚和压力波动减小,润滑膜的最小膜厚逐渐增大,最大压力逐渐减小,直到润滑膜的粗糙峰与粗糙谷相对时,膜厚和压力不在波动,最小膜厚达到最大,最大压力达到最小。然后当这个表面粗糙峰再继续接近下一个表面粗糙峰时,膜厚和压力的波动增大,润滑膜的最小膜厚又开始减小,最大压力又增大,直到润滑膜的粗糙峰与粗糙峰相对时,膜厚和压力波动最大,最小膜厚达到最小,最大压力达到最大。  相似文献   

10.
《机械传动》2016,(1):119-123
建立了考虑表面织构的滑动轴承的弹流润滑几何模型,对考虑圆弧形凹坑、矩形凹坑和直角-三角形凹坑的水润滑飞龙轴承的弹流性能进行了数值分析。结果表明,压力与膜厚在凹坑处均出现波动,压力峰值和最小膜厚减小;滑滚比增大,最小膜厚减小,圆弧形凹坑的最小膜厚大于矩形凹坑的,远远大于直角-三角形凹坑的最小膜厚;随着轴承表面凹坑深度的增加,压力波动不明显;膜厚随着凹坑深度的增大,波动幅度增大,最小膜厚减小;直角三角形凹坑的轴承最不利于润滑。  相似文献   

11.
为了研究微尺度下速度滑移对液体静压止推轴承性能的影响,将速度滑移模型引入传统雷诺方程中,得到修正的雷诺方程;通过求解修正后的雷诺方程,得到速度滑移影响下八油腔液体静压止推轴承的静态性能特性。研究结果表明:速度滑移的存在并没有改变轴承性能的变化趋势,但使得相同油膜厚度下油膜压力、轴承承载力和刚度增大;随着滑移长度的增大,轴承油腔压力、承载力及刚度增大,最优油膜厚度变小;轴承的承载力和刚度随着供油压力的增大而增大,供油压力相同时,速度滑移使得轴承承载力和刚度有一定程度的增大。  相似文献   

12.
含均压槽静压止推气体轴承的气膜特性   总被引:1,自引:0,他引:1  
采用ICEM建立含均压槽的静压止推气体轴承的气膜二维计算模型,分析不同供气压力和气膜厚度下的气膜压力、速度分布,并计算不同供气压力和气膜厚度下的承载力和气体质量流量。结果表明:随着供气压力和气膜厚度的增大,均压槽内的气旋现象越来越明显;随着供气压力的减小和气膜厚度的增大,气膜压力趋近于线性分布;轴承的承载力随着供气压力的增大而增大,气体流量随着供气压力和气膜厚度的增大而增大。均压槽是影响气膜压力和速度分布的关键因素,而均压槽内的气旋现象是影响均压槽内部流场的主要原因之一,而随着气膜厚度的增大均压槽的这种影响会而逐渐减小。  相似文献   

13.
建立具有中央凸起的点接触弹流润滑控制方程,并采用多重网格法及多重网格积分法进行数值求解;比较有凸起表面和光滑表面下的压力及膜厚曲线,讨论载荷及卷吸速度对压力分布及油膜形状的影响。结果表明:具有中央凸起时在接触中心附近,压力经历了急剧升高、骤然下降、再升高的一个波动过程;最小膜厚出现在接触中心,且接触中心前面产生了一个凹陷;增大卷吸速度或减小载荷都使得膜厚曲线整体升高,最小膜厚随着卷吸速度的增大而增大,载荷几乎不影响最小膜厚;载荷增大使得最大压力增大,但中心局部压力波动范围变化很小;增大卷吸速度使得最大压力和中心局部压力波动范围都减小。  相似文献   

14.
利用Reynolds方程,对海水润滑条件下赛龙轴承在考虑热效应时的弹流润滑问题进行数值模拟,讨论载荷、转速和轴承轴径大小对海水润滑膜压力及膜厚的影响。结果表明:热效应对于水膜压力影响很小,而考虑热效应时的膜厚会有所减小;随载荷的增大,压力峰值有所增大,膜厚随载荷的增大有明显的减小;随转速的增大压力峰值减小,而膜厚随转速的增大而有明显的增大;轴径的大小对于水膜压力和膜厚的大小影响不明显。  相似文献   

15.
为研究新型动静压转台的油膜力分布与动特性变化情况,在充分考虑转台轴向速度产生的挤压流量的同时,基于流量平衡建立转台油膜力的数学模型,利用偏导数法推导转台轴向油膜刚度和阻尼的计算式。在固定负载和和恒定的供油压力下,分析转速对转台的静动特性的影响。分析结果表明:在固定负载和恒定的供油压力下,随着转速的增加,转台的油膜厚度逐渐减小,动压区的承载力逐渐增大,转台总泄漏量逐渐增加,转台轴向油膜刚度和阻尼均逐渐增大。所建的模型充分考虑了转台轴向速度产生的挤压流量,因而仿真计算更符合实际工况,为新型动静压转台的实际生产和性能研究提供理论支持。  相似文献   

16.
为建立可倾瓦推力轴承惰转过程中最小油膜厚度的预测方法,依据核主泵推力轴承的实际工作情况,基于雷诺方程的自编程序,分别进行热态和冷态下主、副轴瓦润滑性能参数的计算与数值模拟分析,提出可倾瓦推力轴承的最小油膜厚度的理论拟合公式,并对最小膜厚的计算值和拟合值进行对比和分析。结果表明:随着转速降低,主轴瓦的最小膜厚单调减小,副轴瓦的最小膜厚先增加后减小;主、副轴瓦最小膜厚的计算值可以和拟合值较好地对应,验证了理论拟合公式的可靠性。提出的理论拟合公式可以通过额定转速下的最小膜厚计算结果预测多种工作条件下的最小油膜厚度,为主泵惰转的安全性提供重要参考。  相似文献   

17.
以某隧道工程实际工况条件为例,建立盾构机主驱动轴承载荷分布计算模型和等温线接触弹流润滑模型,通过数值分析得到极限工况和占比99.9%的工况条件下盾构机主驱动轴承的油膜厚度及油膜压力分布;依据实际工况条件分析不同工况对轴承油膜厚度、油膜压力的影响规律,以及滚子所处位置不同时滚子负载与油膜压力和膜厚之间的变化关系。结果表明:不同工况下主轴承油膜厚度、油膜压力分布规律相似,均出现二次峰值;同一工况下,随着滚子于主轴承所处位置不同,油膜压力及膜厚最值随滚子负载的增大而减小;同一位置处二者最值随主轴承受力的增大而减小。  相似文献   

18.
根据角接触球轴承自旋运动特征,同时考虑弹流润滑效应,建立角接触球轴承考虑自旋运动的弹流润滑模型;采用多重网格法求解弹性变形,利用有限差分法迭代求解雷诺方程,得到较为精确的数值解;分析不同赫兹接触压力、滚道表面粗糙度下自旋对角接触球轴承弹流润滑和油膜刚度的影响。结果表明:考虑自旋时随着Hertz接触压力、自旋角速度增大,油膜厚度减小,油膜压力增大,油膜承压区域呈细长状,并向接触中心靠近;随着滚道表面粗糙度幅值增大,油膜压力和膜厚均出现了波动,且考虑自旋运动时,轴承油膜厚度明显减小,油膜局部压力峰值更大;随着卷吸速度、润滑油黏度增大,油膜刚度减小,而考虑自旋运动时油膜刚度值更大;随着自旋角速度增大,油膜刚度逐渐增大。  相似文献   

19.
建立旋滑条件下椭圆接触弹流润滑的数学模型,用多重网格法求得该条件下的完全数值解,研究速度、载荷、偏心距和椭圆比对油膜厚度、形状和压力的影响。结果表明,偏心距较小时,油膜厚度和形状都与普通弹流有明显的不同;速度、载荷和椭圆比增加及偏心距减小,均会导致接触区两侧最小膜厚的差值增大,油膜形状的非对称性增强;速度、椭圆比增加,油膜厚度增加,接触区压力减小,载荷增加或偏心距减小,油膜厚度减小,接触区压力增加。  相似文献   

20.
运用斜齿轮有限长线接触数学模型,对渐开线变位斜齿轮进行热弹流润滑数值分析;分析正变位、负变位、等变位3种变位系数下斜齿轮的热弹流润滑状态,计算不同变位系数下斜齿轮的油膜压力、膜厚及温升,并与标准斜齿轮传动计算结果进行比较。结果表明:热弹流润滑条件下,斜齿轮的变位对油膜压力影响不大,对膜厚有较大的影响;变位斜齿轮正传动时,随变位系数的增大,压力减小,膜厚增大;沿最长接触线时,与标准斜齿轮的传动相比,变位斜齿轮正变位系数下压力最小、膜厚最大、温度最低,因此,选择正变位系数更有利于斜齿轮的润滑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号