首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

There are many smart applications evolved in the area of the wireless sensor networks. The applications of WSNs are exponentially increasing every year which creates a lot of security challenges that need to be addressed to safeguard the devices in WSN. Due to the dynamic characteristics of these resource constrained devices in WSN, there must be high level security requirements to be considered to create a high secure environments. This paper presents an efficient multi attribute based routing algorithm to provide secure routing of information for WSNs. The work proposed in this paper can decrease the energy and enhances the performance of the network than the currently available routing algorithm such as multi-attribute pheromone ant secure routing algorithm based on reputation value and ant-colony optimization algorithm. The proposed work secures the network environment with the improved detection techniques based on nodes’ higher coincidence rates to find the malicious behavior using trust calculation algorithm. This algorithm uses some QoS parameters such as reliability rate, elapsed time to detect impersonation attacks, and stability rate for trust related attacks, to perform an efficient trust calculation of the nodes in communication. The outcome of the simulation show that the proposed method enhances the performance of the network with the improved detection rate and secure routing service.

  相似文献   

2.
Hong  Zhen  Shao  Qian  Liao  Xiaojing  Beyah  Raheem 《Wireless Networks》2019,25(7):3805-3823

With the emergence of the Internet of Things (IoT) in recent years, the security has been significantly called more and more people’s attention on wireless communication between the devices and the human-beings, as well as the devices to devices. Smart home (SH), as a small-scale example of the smart application-based field, has benefited from the concept of IoT since it uses an indoor data-centric sensor network. In SH, routing schemes are widely utilized for data aggregation purposes. However, there are three main issues, which can considerably affect the current execution of routing protocol in SH: (1) lack of technical methods for precisely regional division of the network, (2) the difficulty of differentiating data among various functional regions, and (3) the vulnerability of network with advanced internal routing attacks. To address the aforementioned issues, in this paper, a two-layer cluster-based network model for indoor structured SH and a novel Beta-based trust management (BTM) scheme are proposed to defend various types of internal attacks by integrating the variation of trust value, threshold, and evaluation. The proposed structure forms a secure hierarchical routing protocol called SH-PCNBTM to effectively support the data transmission service in SH networks. The performance of SH-PCNBTM is thoroughly evaluated by using a set of comprehensive simulations. We will show that the proposed routing protocol not only ensures the even distribution of cluster-heads in each sub-region, but it also identifies and isolates the malicious sensor nodes accurately and rapidly compared with other trust-based hierarchical routing protocols.

  相似文献   

3.
4.
In Cognitive Radio (CR) networks, the non-cooperative behavior is an inherent security issue because it is necessary to realize many functions by means of cooperation, such as spectrum sensing. Then it is important to guarantee the support of cooperation between nodes on multicast communication. In this paper, first the multicast model with optimizing energy use is shown, in which consists of many multicast units. By considering the power consumption concerning spectrum sensing and data transmission, the multicast problem with optimizing energy use is translated into a 0-1 integer programming problem. Secondly, the trust values are calculated by the Bayesian theorem in CR networks. In order to improve the stability of trust mechanism, the new trust values are modified by the iterative control criterion. Finally, a secure minimum-energy multicast (SMEM) algorithm is proposed to ensure multicast communication, and the following example is shown to explain it. The simulation and analysis show that the time complexity of our proposed algorithm is polynomial. Moreover, with the increase of destination nodes, the SMEM algorithm is more effective than the distributed Dist-Implement models of adjustable transmission power in energy utilization.  相似文献   

5.
Secure group communication is a paradigm that primarily designates one-to-many communication security. The proposed works relevant to secure group communication have predominantly considered the whole network as being a single group managed by a central powerful node capable of supporting heavy communication, computation and storage cost. However, a typical Wireless Sensor Network (WSN) may contain several groups, and each one is maintained by a sensor node (the group controller) with constrained resources. Moreover, the previously proposed schemes require a multicast routing support to deliver the rekeying messages. Nevertheless, multicast routing can incur heavy storage and communication overheads in the case of a wireless sensor network. Due to these two major limitations, we have reckoned it necessary to propose a new secure group communication with a lightweight rekeying process. Our proposal overcomes the two limitations mentioned above, and can be applied to a homogeneous WSN with resource-constrained nodes with no need for a multicast routing support. Actually, the analysis and simulation results have clearly demonstrated that our scheme outperforms the previous well-known solutions.  相似文献   

6.
Prompt and reliable communication between vehicular nodes are essential as its limited coverage and dynamic mobility rate introduces frequent change of network topology. The key feature of vehicular communication that establishes direct connectivity or Road Side Unit-based data transfer among vehicular nodes is responsible for sharing emergency information during critical situations. Multicast routing data dissemination among vehicular nodes is considered to be the potential method of parallel data transfer as they facilitate the option of determining an optimal multicast tree from feasible number of multicast trees established between the source and destinations. This estimation of optimal multicast tree using meta-heuristic techniques is confirmed to improve the throughput and reliability of the network when QoS-based constraints are imposed during multicast routing. An Improved Shuffled Frog-Leaping Algorithm-Based QoS Constrained Multicast Routing (ISFLABMR) is proposed for estimating an optimal multicast tree that confirms effective multi-constrained applied multicast routing between vehicular nodes. ISFLABMR minimizes the cost of transmission to 22% by reducing the number of multicast clusters formed during multicasting through the utilization of local and global-based optimizations. The simulation results of ISFLABMR proveits predominant reduction rate of 24% and 21% in average packet latency and energy consumptions incurred under multicast routing.  相似文献   

7.
An important problem in both wireless and wired communication networks is to be able to efficiently multicst information to a group of network sites. Multicasting reduces the transmission overhead of both wireless and wired networks and the time it takes for all the nodes in the subset to receive the information. Since transmission bandwidth is a scarce commodity especially in wireless networks, efficient and near minimum-cost multicast algorithms are particularly useful in the wireless context. In this paper, we discuss methods of establishing efficient and near minimum-cost multicast routing in communication networks. In particular, we discuss an efficient implementation of a widely used multicast routing method which can construct a multicast tree with a cost no greater than twice the cost of an optimal tree. We also present two efficient multicast tree constructions for a general version of the multicast routing problem in which a network consists of different classes of nodes, where each class can have one or more nodes of the same characteristic which is different from the characteristics of nodes from other classes. Because of their efficient running times, these multicast routing methods are particularly useful in the mobile communication environments where topology changes will imply recomputation of the multicast trees. Furthermore, the proposed efficient and near minimum-cost multicast routing methods are particularly suited to the wireless communication environments, where transmission bandwidth is more scarce than wired communication environments.Partially supported by NSF/LaSER under grant number EHR-9108765, by LEQSF grant number 94-RD-A-39, by NASA under grant number NAG 5-2842.  相似文献   

8.

Internet of Things (IoT) is a heterogeneous network of interconnected things where users, smart devices and wireless technologies, collude for providing services. It is expected that a great deal of devices will get connected to the Internet in the near future. Opportunistic networks(OppNet) are a class of disruption tolerant networks characterized by uncertain topology and intermittent connectivity between the nodes. Opportunistic Internet of Things(OppIoT) is an amalgamation of the OppNet and IoT exploiting the communication between the IoT devices and the communities formed by humans. The data is exposed to a wide unfamiliar audience and the message delivery is dependent on the residual battery of the node, as most of the energy is spent on node discovery and message transmission. In such a scenario where a huge number of devices are accommodated, a scalable, adaptable, inter-operable, energy-efficient and secure network architecture is required. This paper proposes a novel defense mechanism against black hole and packet fabrication attacks for OppIoT, GFRSA, A Green Forwarding ratio and RSA (Rivest, Shamir and Adleman) based secure routing protocol. The selection of the next hop is based on node’s forwarding behavior, current energy level and its predicted message delivery probability. For further enhancing the security provided by the protocol, the messages are encrypted using asymmetric cryptography before transmission. Simulations performed using opportunistic network environment (ONE) simulator convey that GFRSA provides message security, saves energy and outperforms the existing protocols, LPRF-MC (Location Prediction-based Forwarding for Routing using Markov Chain) and RSASec (Asymmetric RSA-based security approach) in terms of correct packet delivery by 27.37%, message delivery probability is higher by 34.51%, number of messages dropped are reduced by 15.17% and the residual node energy is higher by 14.08%.

  相似文献   

9.

Constraint Application Protocol (CoAP), an application layer based protocol, is a compressed version of HTTP protocol that is used for communication between lightweight resource constraint devices in Internet of Things (IoT) network. The CoAP protocol is generally associated with connectionless User Datagram Protocol (UDP) and works based on Representational State Transfer architecture. The CoAP is associated with Datagram Transport Layer Security (DTLS) protocol for establishing a secure session using the existing algorithms like Lightweight Establishment of Secure Session for communication between various IoT devices and remote server. However, several limitations regarding the key management, session establishment and multi-cast message communication within the DTLS layer are present in CoAP. Hence, development of an efficient protocol for secure session establishment of CoAP is required for IoT communication. Thus, to overcome the existing limitations related to key management and multicast security in CoAP, we have proposed an efficient and secure communication scheme to establish secure session key between IoT devices and remote server using lightweight elliptic curve cryptography (ECC). The proposed ECC-based CoAP is referred to as ECC-CoAP that provides a CoAP implementation for authentication in IoT network. A number of well-known cryptographic attacks are analyzed for validating the security strength of the ECC-CoAP and found that all these attacks are well defended. The performance analysis of the ECC-CoAP shows that our scheme is lightweight and secure.

  相似文献   

10.

In Vehicular ad-hoc networks (VANETs), routing and security are the mainchallenges. In our previous work, we have presented cluster-based secure communication with the certificate revocation scheme for securable communication between the vehicles.Cluster formation is done using the trust degree of each vehicle and this trust degree is calculated based on the direct and indirect trust degree of each vehicle. Information of eachvehicle is gathered by the corresponding cluster head (CH) in a cluster. This information is maintained by the Certificate Revocation List (CRL) in the Certificate Authority (CA). CA isolates a vehicle as an attacked node if it has less trust degree than the threshold trust value and it invalidates the certificate of attacked or revoked nodes. Before transmission, each vehicle in a cluster validates its certificate with the support of CA. After the validation, the other challenge of VANET i.e., efficient route is to be established so that Energy efficient enhanced OLSR routing protocol using Particle Swarm Optimization (PSO) algorithm is presented in this paper. After the establishment of the efficient route, the vehicle deploys the symmetric cryptography approach for securable transmission. Simulation results show that the performance of our proposed approach outperforms the performance of existing work in terms of energy efficiency.

  相似文献   

11.
Internet of things (IoT) applications based on wireless sensor networks (WSNs) have recently gained vast momentum. These applications vary from health care, smart cities, and military applications to environmental monitoring and disaster prevention. As a result, energy consumption and network lifetime have become the most critical research area of WSNs. Through energy-efficient routing protocols, it is possible to reduce energy consumption and extend the network lifetime for WSNs. Using hybrid routing protocols that incorporate multiple transmission methods is an effective way to improve network performance. This paper proposes modulated R-SEP (MR-SEP) for large-scale WSN-based IoT applications. MR-SEP is based on the well-known stable election protocol (SEP). MR-SEP defines three initial energy levels for the nodes to improve the network energy distribution and establishes multi-hop communication between the cluster heads (CHs) and the base station (BS) through relay nodes (RNs) to reduce the energy consumption of the nodes to reach the BS. In addition, MR-SEP reduces the replacement frequency of CHs, which helps increase network lifetime and decrease power consumption. Simulation results show that MR-SEP outperforms SEP, LEACH, and DEEC protocols by 70.2%, 71.58%, and 74.3%, respectively, in terms of lifetime and by 86.53%, 86.68%, and 86.93% in terms of throughput.  相似文献   

12.
In cognitive radio networks, the non-cooperative behavior is an inherent security issue. Then it is important to guarantee the support of the cooperation among nodes. In this paper, first the distributed routing problems with optimizing energy use are translated into a 0–1 integer programming problem by analyzing the dynamical power interference among nodes. Secondly, the key allocation about end nodes is devised to realize the confidentiality about data transmission. Thirdly, a secure distributed routing algorithm (SDRA) with energy use is proposed to ensure the security on end-to-end communication. The simulation and analysis show that the energy use for the SDRA is lower than that of the spectrum and energy aware routing protocol. Moreover, the trust mechanism based on Bayesian theorem is more compatible than that of Beta function for distributed routing algorithm in the actual situation.  相似文献   

13.
移动Ad-hoc网络(MANETs)具有开放的媒质,动态的拓扑结构,分布式的合作和受限的网络能力等基本特点。网络中移动节点具有匿名性和高度自治的特点,网络通讯依靠在通信路径上的中间节点转发数据包,实现无线传输范围外节点间的正常通信。该文提出了一种独特的MANETs中基于频率下多目标可信路由决策算法,它和现在大多数路由算法都是在时间域下使用单一约束参数选择路由的方式截然不同。利用概率理论分析安全和可信路由,基于概率密度函数的时频相互转化,减小计算复杂度,解决MEANTs中节点间缺乏物理安全以及在低信任水平和节点相互勾结扰乱网络操作情况下,发现可信安全路由难的问题。实例分析证明了此算法的可行性。  相似文献   

14.

Many errors in data communication cause security attacks in Internet of Things (IoT). Routing errors at network layer are prominent errors in IoT which degrade the quality of data communication. Many attacks like sinkhole attack, blackhole attack, selective forwarding attack and wormhole attack enter the network through the network layer of the IoT. This paper has an emphasis on the detection of a wormhole attack because it is one of the most uncompromising attacks at the network layer of IoT protocol stack. The wormhole attack is the most disruptive attack out of all the other attacks mentioned above. The wormhole attack inserts information on incorrect routes in the network; it also alters the network information by causing a failure of location-dependent protocols thus defeating the purpose of routing algorithms. This paper covers the design and implementation of an innovative intrusion detection system for the IoT that detects a wormhole attack and the attacker nodes. The presence of a wormhole attack is identified using location information of any node and its neighbor with the help of Received Signal Strength Indicator (RSSI) values and the hop-count. The proposed system is energy efficient hence it is beneficial for a resource-constrained environment of IoT. It also provides precise true-positive (TPR) and false-positive detection rate (FPR).

  相似文献   

15.
The mobile ad hoc network (MANET) is communication network of a mobile node without any prior infrastructure of communication. The network does not have any static support; it dynamically creates the network as per requirement by using available mobile nodes. This network has a challenging security problem. The security issue mainly contains a denial of service attacks like packet drop attack, black-hole attack, gray-hole attack, etc. The mobile ad-hoc network is an open environment so the working is based on mutual trust between mobile nodes. The MANETs are vulnerable to packet drop attack in which packets travel through the different node. The network while communicating, the node drops the packet, but it is not attracting the neighboring nodes to drop the packets. This proposed algorithm works with existing routing protocol. The concept of trusted list is used for secure communication path. The trusted list along with trust values show how many times node was participated in the communication. It differentiates between altruism and selfishness in MANET with the help of energy level of mobile components. The trust and energy models are used for security and for the differentiation between altruism and selfishness respectively.  相似文献   

16.
In this paper, we present new algorithms for online multicast routing in ad hoc networks where nodes are energy-constrained. The objective is to maximize the total amount of multicast message data routed successfully over the network without any knowledge of future multicast request arrivals and generation rates. Specifically, we first propose an online algorithm for the problem based on an exponential function of energy utilization at each node. The competitive ratio of the proposed algorithm is analyzed if admission control of multicast requests is permitted. We then provide another online algorithm for the problem, which is based on minimizing transmission energy consumption for each multicast request and guaranteeing that the local network lifetime is no less than gamma times of the optimum, where gamma is constant with 0 < gammaleq 1. We finally conduct extensive experiments by simulations to analyze the performance of the proposed algorithms, in terms of network capacity, network lifetime, and transmission energy consumption for each multicast request. The experimental results clearly indicate that, for online multicast routing in ad hoc wireless networks, the network capacity is proportional to the network lifetime if the transmission energy consumption for each multicast request is at the same time minimized. This is in contrast to the implication by Kar et al. that the network lifetime is proportional to the network capacity when they considered the online unicast routing by devising an algorithm based on the exponential function of energy utilization at each node.  相似文献   

17.
基于能量优化的无线传感器网络安全路由算法   总被引:4,自引:1,他引:3       下载免费PDF全文
针对无线传感器网络路由面临安全威胁和节点能量有限的不足,提出一种基于能量优化的安全路由算法(EOSR).该算法把优化能量、提高路由安全性和缩短传输时延同时作为设计目标,采用多目标决策,在保证安全性和快速传输的同时,让能量储备较多的节点承担较多的数据转发任务,可获得最优路由和延长网络生命期.通过预置公私密钥对,有效地提高了路由的安全性.给出了该算法中路由发现、路由选择和路由删除的具体步骤,通过仿真实验证明该算法的有效性.  相似文献   

18.

The wireless sensor network based IoT applications mainly suffers from end to end delay, loss of packets during transmission, reduced lifetime of sensor nodes due to loss of energy. To address these challenges, we need to design an efficient routing protocol that not only improves the network performance but also enhances the Quality of Service. In this paper, we design an energy-efficient routing protocol for wireless sensor network based IoT application having unfairness in the network with high traffic load. The proposed protocol considers three-factor to select the optimal path, i.e., lifetime, reliability, and the traffic intensity at the next-hop node. Rigorous simulation has been performed using NS-2. Also, the performance of the proposed protocol is compared with other contemporary protocols. The results show that the proposed protocol performs better concerning energy saving, packet delivery ratio, end-to-end delay, and network lifetime compared to other protocols.

  相似文献   

19.
Over the last decade, the Internet of Things (IoT) has become ever more popular, as is evident from its role in changing the human lifestyle and conferring remarkable privileges for them. It has a significant presence in various crucial areas, including smart cities, smart factories, manufacturing, transportation, and healthcare. Massive amounts of data generated by IoT devices have the potential to endanger the lifetime of nodes in IoT-based networks due to increased communication power consumption. It has become crucial to propose solutions for network-based issues, such as quality of service, security, network heterogeneity, congestion avoidance, reliable routing, and energy conservation. To address the mentioned problems, routing protocols play a critical role in data transmission among heterogeneous items. In such environments, routing refers to constructing routes between mobile nodes. Since identifying optimal routes among IoT nodes and establishing an effective routing protocol in an IoT network are an NP-hard issue, employing metaheuristic algorithms may be a viable solution to overcome this problem. Various IoT routing protocols based on metaheuristic algorithms have been presented in recent years, but there is still a lack of systematic study for reviewing the existing works. The current study emphasizes the impact of metaheuristic algorithms in the IoT routing problem, discusses the optimization models, presents a comprehensive comparison of protocols based on critical parameters, and eventually suggests some hints for future studies.  相似文献   

20.
Due to the limitation of node energy resources, the management of energy consumption is one of the most important problems of the internet of things (IoT). Therefore, many studies have tried to optimize and manage energy consumption by focusing on different techniques. Although each of these studies has improved and optimized energy consumption, there are many important problems, including maintaining traffic balance and energy consumption of network nodes. Therefore, a new method is necessary to maintain the load and energy balancing of network nodes. Therefore, this paper introduces energy and load balancing routing protocol for IoT (ELBRP) based on the development of the RPL routing protocol and the efficiency of data distribution technique. The ELBRP performance has three steps. In the first step, along with the process of sending DODAG information object (DIO) messages, the status of network nodes is evaluated. In the second step, the DODAG communication graph is formed according to the ELBRP. In the third step, data transmission is done according to the distribution technique with the goal of balancing traffic and energy. The simulation results using cooja simulator showed the superiority of ELBRP in improving energy consumption and successful delivery ratio, reducing delay and increasing the network lifetime compared to the similar methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号