首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose a novel resource allocation scheme for co-channel interference avoidance in LTE heterogeneous networks with universal spectrum reuse where both macro users (MUs) and cognitive femto base stations (FBSs) within the same macrocell coverage can dynamically reuse whole spectrum. Specifically, resource blocks (RBs) are shared between cognitive FBSs in underlay mode while the resource sharing among FBSs and MUs is in overlay mode. The macrocell is divided into inner and outer regions with the inner region further divided into three sectors. The proposed scheme addresses co-channel interference (CCI) by employing fractional frequency reuse (FFR) for RB allocation in the outer region of the macrocell and increase the distance of users that reuse the same RB within the macrocell. Part of RBs are allocated to the outer region of the macrocell with a FFR factor of 1/3, while the remaining RBs are dynamically allocated to each sector in the inner region of macrocell based on MUs demand to efficiently utilize the available spectrum. A basic macro base station (MBS) assistance is required by the FBS in selection of suitable RB to avoid interference with MU in each sector. With the proposed solution, both macro and femto users can dynamically access the whole spectrum while having minimum bandwidth guarantee even under fully congested scenarios. Moreover, the proposed scheme practically eliminates the cross-tier interference and the CCI problem in heterogeneous network reduces to inter-femtocell interference. The throughput and outage performances of the proposed scheme are validated through extensive simulations under LTE network parameters. Simulation results show that the proposed scheme achieves a performance gain of more than 1.5 dB in terms of SINRs of both macro user and femto user compared to traditional cognitive and non-cognitive schemes without bandwidth guarantee for femtocells.  相似文献   

2.
王学婷  朱琦 《信号处理》2017,33(2):168-177
分层异构网络中家庭基站与宏基站之间往往存在干扰,如何分配资源以获得高谱率和高容量、保证用户性能一直是研究的重点。为了解决这个问题,本文提出了一种异构蜂窝网络中基于斯坦克尔伯格博弈的家庭基站与宏基站联合资源分配算法,算法首先基于图论的分簇算法对家庭基站和宏用户进行分簇和信道分配,以减少家庭基站之间的同层干扰和家庭基站层与宏蜂窝网络的跨层干扰;然后建立了联合家庭基站发射功率以及宏用户接入选择的斯坦克尔伯格博弈,推导出达到纳什均衡时的家庭基站发射功率的表达式,并据此为宏用户选择合适的接入策略。仿真结果表明,该算法能够有效地提高宏用户的信干噪比(SINR),家庭用户的性能也得到改善。   相似文献   

3.
Femtocells are considered as a solution for indoor high data rate demands. Interference mitigation is a fundamental challenge in two-tier femto–macrocell networks. In this paper, we consider six-sector macrocell layout for reducing the co-tier interference in the macrocell network and cross-tier interferences from macrocell to femtocell network. As interference reduces, the whole of available spectrum can be used in each macrocell which increases the spectrum efficiency. We also consider interference-level algorithm to allocate resource for femtocell in which macrocell uses the whole of spectrum. In the coverage area of each sector, femtocell uses a portion of the spectrum that is not used by the macrocell users. This approach ignores the high co-channel interference from the macrocell network to the femtocell network and vice versa in each sector. Simulation results show that the proposed layout and interference management scheme reduce the downlink interference and increase the efficiency of the orthogonal frequency division multiple access (OFDMA)-based femtocell and macrocell. Consequently, system throughput and outage probability are improved significantly.  相似文献   

4.
Liang  Yao-Jen 《Wireless Networks》2019,25(4):1605-1617

User mobility is a challenging issue in macro and femto cellular networks for the fifth-generation and newer mobile communications due to the time-varying interference and topology experienced. In this paper, we consider an OFDMA-based two-tier network with one macro cell and several femto cells, wherein each macro user and/or femto user can leave or enter its serving cell frequently, referred to as user mobility. A resource allocation problem with different rate requirements of mobile users is then formulated. Assuming well knowledge of the user locations and the channel state information, we propose a dynamic algorithm with static and dynamic parts for a better trade-of between computational complexity and system throughput. The static algorithm, named interference weighted cluster algorithm in this paper, is based on the graph theory to cluster the femtocells by minimizing the interference between clusters, while the dynamic algorithm is to deal with the user mobility by sharing the resource blocks under the constraints of rate requirements. Numerical results are demonstrated to show the effectiveness of the proposed dynamic resource allocation algorithm in terms of capacity, computational time, and outage probability.

  相似文献   

5.
This paper considers the co-channel interference mitigation problem and proposes a preset threshold based cross-tier handover algorithm for uplink co-channel interference mitigation in two-tier femtocell networks. The proposed cross-tier handover algorithm introduces a preset threshold cross-tier handover policy, which takes into account both the time-to-stay (TTS) of a macrocell user equipment (MUE)/femtocell user equipment (FUE) in a femtocell/the macrocell, and the received signal to interference plus noise ratio (SINR) at a femtocell access point (FAP)/the macrocell base station (MBS) in making a cross-tier handover decision for an MUE/FUE. A cross-tier handover decision is made by comparing the TTS of an MUE/FUE in a femtocells/the macrocell and the SINR at a FAP/the MBS with a preset TTS threshold and different SINR thresholds. The objective of the preset threshold based cross-tier handover algorithm is to increase the received SINR at the MBS/FAPs and thus improve the network performance. The performance of the proposed cross-tier handover algorithm with the minimum power transmission and the optimal power transmission is analyzed, respectively. Numerical results show that the proposed preset threshold based cross-tier handover algorithm can significantly improve the network performance in terms of the outage probability, user sum rate, and network capacity.  相似文献   

6.
Fractional frequency reuse (FFR) has recently emerged as an efficient inter-cell interference coordination technique for orthogonal frequency division multiple access (OFDMA) based multi-tier cellular networks due to its low complexity, minimal signaling over-head, and coverage improvement. In this work, an intermediary region (IR) at the border of the center region (CR) and edge region (ER) is defined, which prevents severe cross-tier interference and is usually ignored by other schemes. Furthermore, a strategic resource allocation scheme is proposed, which allows macro users in this new region to be served more resources due to their good channel conditions close to the serving base station (BS), while femto users are assigned resource blocks from sub-bands that receive the least net interference from a set of usable sub-bands in any region. We find by analysis and simulation the optimal threshold for IR, which minimizes the cross-tier interference, and show that the femto throughput is also maximized for this threshold. Numerical results show the proposed scheme outperforms other notable schemes in terms of throughput and outage performances.  相似文献   

7.
This paper analyzes two‐tier orthogonal frequency‐division multiplexing (OFDM)‐based cellular structure, when the traditional macrocell structure is extended with femtocells. The benefit of using femtocells is the capacity and coverage extension capability. To fulfill strict quality of service requirements in next‐generation mobile networks such as Long Term Evolution (LTE) or LTE‐Advanced, capacity and coverage enhancing becomes rather important. On the other hand, adding small cells such as femtocells next to macrocell modifies the interference pattern of the current region. Therefore, the number of small cells in a given area should be limited. In this paper, we provide an analytic framework to calculate the outage probability for a macrocell user in OFDM‐based femtocell networks when the deployed femto base stations are composing an independent Poisson cluster process such as Thomas cluster process. Cluster‐based femtocell modeling offers accurate network planning for mobile operators. In this cluster‐based realization, we give an interference characterization and consider the outage probability for a randomly deployed user when communication channel is infected with Rayleigh fading. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
在异构网络中,小小区可以为宏基站用户提供接入服务,并能够根据自身条件调节传输参数。该文研究在宏基站端干扰消除技术,来消除宏基站到小小区用户的干扰。该文分析了采用此种方案后异构网络下行链路的整体性能,推导了宏基站和小小区用户接收端信噪比的概率密度函数和分布函数。在此基础上,得到了系统整体中断概率的闭合表达式。理论推导和仿真结果表明,干扰消除方案能够有效提升异构蜂窝网络的整体性能。  相似文献   

9.
The mutual electromagnetic interference among macro users and femto users is a challenge, when femtocells are deployed in LTE and LTE advanced systems. When the used femtocells have a closed access, the macro users, who are indoors or near to the femtocells, are prone to a severe interference from the femto access points especially, in the case of the universal frequency reuse deployment. A power control is an effective way to improve the macro users’ geometry at the expense of a drop in the femto users’ geometry and capacity. The concept of a cognitive radio is proposed, as a novel approach, to mitigate the interference and improve the macro and femto users’ geometry. The system is designed, mathematically analyzed, and simulated considering that the femto users are secondary users for the macro users. The macro users and the femto users’ throughputs of the proposed system are estimated. Comparisons among the universal frequency reuse, the power control, and the suggested approach are held. The simulation results validate the efficiency of the proposed system. The average of femto users’ throughput in the proposed system is better than the corresponding one employing the universal frequency reuse or the power control, even if only 20 % of the subcarriers are available to be accessed by the femto users. Moreover, the macro users’ throughput in the proposed system is better than the corresponding one applying the universal frequency reuse or the power control, even if only 40 % of the subcarriers are available to be accessed by the macro users.  相似文献   

10.
This paper investigates the radio resource management (RRM) issues in a heterogeneous macro‐femto network. The objective of femto deployment is to improve coverage, capacity, and experienced quality of service of indoor users. The location and density of user‐deployed femtos is not known a‐priori. This makes interference management crucial. In particular, with co‐channel allocation (to improve resource utilization efficiency), RRM becomes involved because of both cross‐layer and co‐layer interference. In this paper, we review the resource allocation strategies available in the literature for heterogeneous macro‐femto network. Then, we propose a self‐organized resource allocation (SO‐RA) scheme for an orthogonal frequency division multiple access based macro‐femto network to mitigate co‐layer interference in the downlink transmission. We compare its performance with the existing schemes like Reuse‐1, adaptive frequency reuse (AFR), and AFR with power control (one of our proposed modification to AFR approach) in terms of 10 percentile user throughput and fairness to femto users. The performance of AFR with power control scheme matches closely with Reuse‐1, while the SO‐RA scheme achieves improved throughput and fairness performance. SO‐RA scheme ensures minimum throughput guarantee to all femto users and exhibits better performance than the existing state‐of‐the‐art resource allocation schemes.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Access control mechanisms for femtocells   总被引:1,自引:0,他引:1  
  相似文献   

12.
This paper evaluates the outage performance of cognitive relay networks with mutual interference between secondary users and primary users under the underlay approach, while adhering to the interference constraint on the primary user. A network path selection criterion, suitable for cognitive relay networks, is provided, from which we derive the outage probability expression of cognitive relay networks. It is shown that the outage probability considering the interference to secondary user from primary user is higher than that without considering the interference to secondary user from primary user. In addition, the outage probability is affected by key network parameters. We analyze network path selection method based on outage probability and prove that the interference to secondary user from primary user has a significant effect on the network path selection and can not be ignored in practical wireless communication environments. Simulation investigation is also provided and used to verify the theoretical analysis.  相似文献   

13.
This paper presents a novel interference management strategy, to adaptively choose the best fractional frequency reuse (FFR) scheme for macro and femto networks. The strategy aims to maximize the system throughput taking into account a number of system constraints. Here, the system constrains consist of the outage constraints of two-tier users and macrocell spectral efficiency requirement. The detailed procedures of our proposed strategy are: 1) A reference signal received power (RSRP) based selection algorithm is presented to adaptively select the optional FFR schemes satisfying the outage constraints. 2) Considering the macrocell spectral efficiency, the optimal FFR scheme is selected from the optional FFR schemes at MeNB side, to achieve the maximum system throughput in two-tier femtocell networks. We study the efficacy of the proposed strategy using an long term evolution advanced (LTE-A) system level simulator. Simulation results show that our proposed interference management strategy can select the best FFR scheme to maximize the system throughput, and the FFR schemes derived by using RSRP-based selection algorithm can be the effective solutions to deploy femtocells in macrocells.  相似文献   

14.
为了解决宏蜂窝与飞蜂窝构成的两层异构网络上行干扰与资源分配问题,提出了一种在认知型飞蜂窝的双层异构网中结合子信道分配和功率控制进行资源分配的框架。通过对异构网中跨层干扰问题进行分析与建模,将求解最优子信道分配矩阵和用户发射功率矩阵作为干扰管理问题的解决方法。模型中认知型飞蜂窝网络子信道和飞蜂窝网络用户构成非合作博弈,双方利用效用函数最优值进行匹配,构成初始信道分配矩阵;再由接入控制器根据接入条件从初始信道分配矩阵中筛选用户,并优化接入用户的发射功率矩阵,得到最优子信道分配矩阵和功率矩阵。仿真结果表明,优化框架提高了双层异构网络中飞蜂窝网络用户的吞吐量和接入率,降低了异构网中跨层干扰。  相似文献   

15.
This paper proposes two interference mitigation strategies that adjust the maximum transmit power of femtocell users to suppress the cross-tier interference at a macrocell base station (BS). The open-loop and the closed-loop control suppress the cross-tier interference less than a fixed threshold and an adaptive threshold based on the noise and interference (NI) level at the macrocell BS, respectively. Simulation results show that both schemes effectively compensate the uplink throughput degradation of the macrocell BS due to the cross-tier interference and that the closed-loop control provides better femtocell throughput than the open-loop control at a minimal cost of macrocell throughput.  相似文献   

16.
Rasheed  Madiha  Ajmal  Sana 《Wireless Networks》2020,26(4):2741-2754

Interference in femtocells due to neighboring femtocells and macrocells is a major issue of two-tier networks. Handover should be made to reduce interference, if and only if, when resources are available. Otherwise, it will further degrade network performance. Resource management should be made in an efficient manner that will not cause interference between macrocells and neighboring femtocells. Since distance between macro base station (MBS) and femto access point (FAP) is short, therefore, it is very hard to sustain low handover probability when macro user moves from MBS to FAP. We proposed handover algorithm for uplink co-channel interference mitigation that will make handover decision on the basis of time-to-stay and signal to interference plus noise ratio thresholds along with efficient resource management mechanism to reduce number of handovers and also resolve interference problem.

  相似文献   

17.
The concept of extending traditional macrocell cellular structure with small cells (like femtocells) in next-generation mobile networks (e. g., Long Term Evolution Advanced) provides a great opportunity to improve coverage and enhance data rate. Femtocells are cost efficient, indoor base stations. These femtocells can operate in closed mode i. e. only restricted users connection are allowed. Therefore, if the number of deployed femtocells is significant, that can dramatically modify the interference pattern of a macrocell. Thus mobile service providers have to pay attention for the number of simultaneously operating femtocells and encroach, if necessary, to provide appropriate service level to every mobile user. In this paper we provide an analytic framework to characterize the upper bound of service outage probability for a potential macrocell user in a two-tier mobile system, when the radio channels are infected by Nakagami- \(m\) fading. In our proposal the femtocells are operating in closed mode and deployed into a designated macrocell, hence every femtocell increases the interference level. The spatial location femtocells is modelled with Poisson cluster process. Compared to traditional grid structure or completely spatial random Poisson point process femtocell deployment, cluster based layout may provides more life realistic deployment scenario. To evaluate the upper bound of service outage we use the tools of stochastic geometry.  相似文献   

18.
A femtocell is a small cellular base station, typically designed for use in a home or small business. The random deployment of a femtocell has a critical effect on the performance of a macrocell network due to co‐channel interference. Utilizing the advantage of a multiple‐input multiple‐output system, each femto base station (FBS) is able to form a cluster and generates a precoding matrix, which is a modified version of conventional single‐cell block diagonalization, in a cooperative manner. Since interference from clustered‐FBSs located at the nearby macro user equipment (MUE) is the dominant interference contributor to the coexisting networks, each cluster generates a precoding matrix considering the effects of interference on nearby MUEs. Through simulation, we verify that the proposed algorithm shows better performance respective to both MUE and femto user equipment, in terms of capacity.  相似文献   

19.
The reverse link capacity of a spectrally overlaid macrocell/microcell cellular code-division multiple-access system supporting various types of traffic is analyzed. Several narrowband subsystems are overlaid with a wideband subsystem in macrocells, while in a microcell, a single narrowband subsystem is operated with the same spectrum as one of the macrocell narrowband subsystems. Using a typical propagation model, the reverse link signal power and interference are characterized as the relative user signal power and the cross-tier interference factors between the macrocell and the microcell, considering various system parameters. The reverse link capacity of the overlay system is then analyzed. Results show that the dominant parameters affecting the system performance are the spectral overlay ratio and the distance between the microcell and macrocell base stations. In particular, when the distance equals half of the macrocell radius, optimum performance can be achieved by minimizing the cross-tier interference factors. These results can be applied to network planning for future wireless communication services.  相似文献   

20.
This article investigates the impact of choosing a specific quality of service constraint on the performance of the cognitive users in a spectrum sharing cognitive environment. To communicate over a wireless channel reserved to a primary user, the cognitive user has to satisfy the primary user’s quality of service constraint. Cognitive systems under interference temperature and outage probability constraints are investigated in this work. The outage probability of the primary user in an interference temperature-constraint environment is analyzed, and the performance measures of the cognitive users are developed. A comparative study of the cognitive user’s performance under equivalent outage probability and interference temperature constraints is conducted as well. Numerical results are presented to verify the theoretical analysis and compare the performance measures under these constraints. Results of this work illustrate the effects of the communication environment parameters on the cognitive users and detail the performance differences between the equivalent outage probability-constraint and interference temperature-constraint cognitive systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号