首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mobility management in mobile wireless sensor networks (MWSNs) is a complex problem that must be taken into account. In MWSN, nodes move in and out of the network randomly. Hence, a path formed between two distant nodes is highly susceptible to changes due to unpredictable node movement. Also, due to the limited resources in WSN, the paths used for data transmission must be tested for the link quality and time consumed for data forwarding. In order to solve these issues, in this paper, an ant-based routing protocol with QoS-effective data collection mechanism is proposed. In this protocol, the link quality and link delay are estimated for each pair of nodes. Link quality is estimated in terms of packet reception rate, received signal strength indicator, and link quality index. A reliable path is chosen from the source to the destination based on the paths traversed by forward ants and backward ants. Then, if the link is found to be defective during data transmission, a link reinforcement technique is used to deliver the data packet at the destination successfully. The mobile robots collect the information with high data utility. In addition, each mobile robot is equipped with multiple antennas, and space division multiple access technique is then applied for effective data collection from multiple mobile robots. Simulation results show that the proposed routing protocol provides reliability by reducing the packet drop and end-to-end delay when compared to the existing protocols.  相似文献   

2.
任智  朱其政  付泽亮  周舟  周杨 《电讯技术》2023,63(10):1546-1552
优化链路状态路由(Optimized Link State Routing,OLSR)协议是一种先验式路由协议,网络中的所有节点通过周期性地发送控制消息来计算全网路由信息。在短波自组织网络中,节点周期性地发送控制消息会占据大量的信道资源,大幅增加网络的控制开销,浪费短波有限的带宽资源,导致网络通信性能急剧下降。其次,受到地形地貌、天线方向和接收性能的个体差异等影响,造成无线链路不稳定,导致网络中存在非对称链路,增加了通信端到端时延。为此,提出了一种低时延的短波自组网OLSR协议。该协议在执行MPR(Multipoint Relay)选择算法时综合考虑了节点的连接度和链路可靠性,在优化MPR节点个数的同时选择链路可靠性较大的节点作为MPR节点,在进行路由选择时能够利用网络中的非对称链路。仿真结果表明,该协议能优化数据包投递成功率、吞吐量、端到端时延和网络控制开销等性能指标。  相似文献   

3.
In recent research, link stability is getting tremendous attention in mobile adhoc networks (MANETs), because of several impediments that occur in a reliable and robust network. Link stability metric is used to improve network performance in terms of end-to-end delay, data success delivery ratio (DSDR) and available route time (ART). Energy consumption, bandwidth and communication delay of major concern in ad hoc networks. A high mobility of MANET nodes reduces the reliability of network communication. In a dynamic networks, high mobility of the nodes makes it very difficult to predict the dynamic routing topology and hence cause route/link failures. Multicast in MANETs is an emerging trend that effectively improves the performance while lowering the energy consumption and bandwidth usage. Multicast routing protocol transmits a packet to multicast a group at a given time instant to achieve a better utilization of resources. In this paper, node mobility is considered to map better their movement in the network. So, the links with long active duration time can be identified as a stable link for route construction. Variation in signal strength is used to identify whether the direction of the node is towards or away from estimating node. We consider signal strength as QoS metric to calculate link stability for route construction. Efforts are made to identify the link with highly probable longer lifetime as the best suitable link between two consecutive nodes. We predict the movement time of nodes that define the route path to the node destination. Exata/cyber simulator is used for network simulation. The simulation results of the proposed routing protocol are compared with on-demand multicast routing protocol and E-ODMRP, which works on minimum hop count path. Analysis of our simulation results has shown improvement of various routing performance metrics such as DSDR, ART, routing overhead and packet drop ratio.  相似文献   

4.
Owing to the unreliability of wireless link and the resource constraints of embedded devices in terms of energy, processing power, and memory size in low power and lossy networks (LLNs), network congestion may occur in an emergency and lead to significant packet loss and end-to-end delay. To mitigate the effect of network congestion, this paper proposes a centralized congestion control routing protocol based on multi-metrics (CCRPM). It combines the residual energy of a node, buffer occupancy rate, wireless link quality, and the current number of sub-nodes for the candidate parent to reduce the probability of network congestion in the process of network construction. In addition, it adopts a centralized way to determine whether the sub-nodes of the congested node need to be switched based on the traffic analysis when network congestion occurs. Theoretical analysis and extensive simulation results show that compared with the existing routing protocol, the performance of CCRPM is improved significantly in reducing the probability of network congestion, prolonging average network lifetime, increasing network throughput, and decreasing end-to-end delay.  相似文献   

5.

In general, Wireless Sensor Networks (WSNs) is developed with a group of distributed and locative sensor nodes for sensing different environmental conditions. The primary challenges faced by WSN are: low network time and transmission data delay. In crucial applications like monitoring the ecosystem, military and disaster management, and data routing, the incorporation of WSN is very critical. Henceforth, a Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol was proposed but it was found to be uneconomical for energy management. Also, the optimization of Cluster Head (CH) is considered as NP hard problem. This research work deals the issues in optimal path selection in routing of wireless sensor networks to increase the network lifetime. Various techniques are available in metaheuristics, such as the Charged System Search (CSS), that effectively used to resolve the routing problem. Despite of this, most of the meta-heuristics suffer from local optima issues. A charged system search and harmony search algorithm based routing protocol is presented in this research work. Experimental results present the efficient performance of proposed HS model with increased cluster structures, improved network lifetime and reduced end-to-end delay and average packet loss rate.

  相似文献   

6.
无线传感器网络簇间节能路由算法   总被引:1,自引:1,他引:0  
胡钢  朱佳奇  陈世志 《通信技术》2009,42(11):135-137
针对基于分簇网络的无线传感器网络簇间路由协议,让簇首和Sink节点直接通信或通过簇首节点转发数据造成能耗不均,节点过早死亡的缺陷。文中提出一种基于网关节点模型的无线传感器网络簇间路由算法,通过簇头与网关节点、网关节点自身建立虚电路,制定存储转发路由,将数据转发给Sink节点。并引入延时等待机制,增强了簇间信息的融合度,此算法适用于大规模无线传感器网络,有良好的可扩展性。仿真表明在能量节省等性能上与传统簇间路由算法相较有较大提高。  相似文献   

7.
In this paper the problem of selecting optimal paths in a MCMI (Multi-Channel Multi-Interface) WMN (Wireless Mesh Network) is considered. The WMNs are characterized by high dynamic range of the received signal level, especially in the indoor environment. To improve the existing routing metrics and track fast changes that occur in the link state, a corresponding parameter based on the received signal level was assigned to each link. By combining this parameter and known metrics, ETX (Expected Transmission Count), WCETT (Weighted Cumulative ETT) and MIC (Metric of Interference and Channel-switching), three new metrics were formed. All metrics were incorporated in MCR (Multi Channel Routing) protocol and an appropriate propagation model was used for simulations in a real, indoor environment. Proposed metrics, original metrics, MCR protocol, and indoor propagation model were implemented in Glomosim simulator. New metrics were compared against known metrics and also among each other in terms of throughput of user data and average end-to-end delay of the network. The results have shown that proposed metrics significantly outperform original metrics. With this approach, better network performance can be achieved without any additional hardware and with minimal software changes.  相似文献   

8.
Delay Tolerant Networks (DTNs) provide message delivery services to users via intermittently connected nodes. In DTNs, routing is one of the most challenging issues since end-to-end connectivity between nodes may not be available most of the time. Although many routing protocols for DTNs have been proposed, they do not achieve satisfactory performance, since they exploit only some of the network characteristics. In this paper, we present a new DTN routing protocol, called the Link Contact Duration-based Routing Protocol (LCD). Like existing protocols, LCD uses the disconnect duration of a link between two nodes to find the routing path with the shortest end-to-end delay. In addition, LCD uses the contact duration of a link and the number of buffered messages to deliver as many messages as possible in a short time. Our simulation results show that LCD has better performance than existing DTN routing protocols.  相似文献   

9.
Mobile sink (MS) has been used in wireless sensor networks (WSN) to increase the network lifetime by changing the location over time. The major quality of service given by WSN is coverage energy consumption (EC) and network lifetime. There are many methods implemented for enhance the coverage hole restoration and reduce the EC. We propose a novel MSCOLER (MS based Coverage Optimization and Link-stability Estimation Routing) protocol for Optimal Coverage restoration and Link stability Estimation. An optimization algorithm is used to optimize the coverage hole and move the redundant node besides the hole. During the routing process, link quality based routing is used to discover the relay nodes with the estimation of link stability to enhance the entire network lifetime and practically make the perfect transmission distance for energy saving. Experimental results demonstrate that proposed protocol can solve the coverage restoration problem, decrease the EC and reduce the network lifetime. The performance is evaluated regarding Average of residual energy (ARE), Receiving packets ratio (RPR), Moving energy consumption (MEC), Network lifetime (NL), Percentage of coverage (%C) and Average Energy Consumption (AEC).  相似文献   

10.

The network lifetime of Wireless Sensor Network (WSN) is one of the most challenging issues for any network protocol. The nodes in the network are densely deployed and are provided with limited power supply. The routing strategy is treated as an effective solution to improve the lifetime of the network. The cluster based routing techniques are used in the WSN to enhance the network lifespan and to minimize the energy consumption of the network. In this paper, an energy efficient heterogeneous clustering protocol for the enhancement of the network lifetime is proposed. The proposed protocol uses the sensor energy for the clustering process in a well-organized manner to maximize the lifetime of network. The MATLAB simulator is used for implementing the clustering model of proposed protocol and for measuring the effectiveness of the proposed technique the comparison is performed with the various existing approaches such as Stability Election Protocol, Distributed Energy Efficient Clustering and Adaptive Threshold Energy Efficient cross layer based Routing.

  相似文献   

11.

Wireless sensor network (WSN) is a group of small power-constrained nodes that sense data and communicate it to the base station (BS). These nodes cover a vast region of interest (ROI) for several purposes according to the application need. The first challenge encountered in WSNs is how to cover the ROI perfectly and send the monitored data to the BS. Although the energy introduced during setup phase and the violation of energy fairness constraint of dynamic routing topologies, they achieve high network performance in terms of coverage and connectivity. In this paper, we categorize the applications of WSN based on different aspects to show the major protocol design issues. Thus, the energy efficiency of the recent proactive routing protocols is studied from different angles. The energy overhead and energy fairness of each protocol were carefully analyzed. The most energy efficient routing protocols for homogeneous proactive networks were studied and compared to highlight the research challenges and existing problems in this area. The results proved that energy overhead and route selection are the most effective aspects of network lifetime and network efficiency.

  相似文献   

12.
信任管理机制为保障无线传感器网络安全提供了一种有效方案,通过对节点的行为进行评价,建立整个网络的信任管理机制,对判断的恶意节点采用相应的限制措施来保障安全。文章以Beta概率密度分布函数的期望值作为信任值,优化网络分簇路由协议,可在保障网络能量高效利用的同时,有效提升整个网络的安全性。  相似文献   

13.
In this paper, the estimation of a scalar field over a bidimensional scenario (e.g., the atmospheric pressure in a wide area) through a self-organizing wireless sensor network (WSN) with energy constraints is investigated. The sensor devices (denoted as nodes) are randomly distributed; they transmit samples to a supervisor by using a clustered network. This paper provides a mathematical framework to analyze the interdependent aspects of WSN communication protocol and signal processing design. Channel modelling and connectivity issues, multiple access control and routing, and the role of distributed digital signal processing (DDSP) techniques are accounted for. The possibility that nodes perform DDSP is studied through a distributed compression technique based on signal resampling. The DDSP impact on network energy efficiency is compared through a novel mathematical approach to the case where the processing is performed entirely by the supervisor. The trade-off between energy conservation (i.e., network lifetime) and estimation error is discussed and a design criterion is proposed as well. Comparison to simulation outcomes validates the model. As an example result, the required node density is found as a trade-off between estimation quality and network lifetime for different system parameters and scalar field characteristics. It is shown that both the DDSP technique and the MAC protocol choice have a relevant impact on the performance of a WSN.  相似文献   

14.
This paper introduces a novel multi-copy routing protocol, called predict and forward (PF), for delay tolerant networks, which aims to explore the possibility of using mobile nodes as message carriers for end-to-end delivery of the messages. With PF, the message forwarding decision is made by manipulating the probability distribution of future inter-contact and contact durations based on the network status, including wireless link condition and nodal buffer availability. In particular, PF is based on the observations that the node mobility behavior is semi-deterministic and could be predicted once there is sufficient mobility history information. We implemented the proposed protocol and compared it with a number of existing encounter-based routing approaches in terms of delivery delay, delivery ratio, and the number of transmissions required for message delivery. The simulation results show that PF outperforms all the counterpart multi-copy encounter-based routing protocols considered in the study.  相似文献   

15.
无线传感器网络是由大量微型传感器节点组成的一个自组织的网络系统,路由协议是其关键技术之一.现有的路由协议分为:能量感知路由协议、以数据为中心的路由协议、基于地理位置的路由协议、可靠的路由协议和层次路由协议五类,对每类协议的特点和比较典型的协议进行了介绍.  相似文献   

16.
程敏敏  宋家友  张汉 《电视技术》2012,36(15):108-111
针对大多数无线传感器网络路由协议在分簇过程中仅考虑能量作为权值的不足,在EAMCT-G协议的基础上进行改进,不仅考虑了节点的剩余能量,还考虑了节点的邻居节点个数以及与周围节点之间距离的均值,这些量的综合作为选取簇头的权值标准。该协议中同时还引入了梯度的思想,保证了节点在进行数据传送时具有方向性和针对性,还提出了基于该协议的路由算法。通过NS2实验仿真分析,该协议在端到端的延时、丢包率、网络吞吐量以及生存期都有所改善。  相似文献   

17.
How to efficiently build routes among nodes is increasing important for mobile ad hoc networks (MANETs). This paper puts forward an interference aware routing protocol called Interference aware cross layer routing protocol (IA-CLR) for MANETs based on the IEEE 802.11 medium access layer (MAC). By defining the node's sending and receiving capabilities, IA-CLR can indicate the interference strength of the link in a real and comprehensive way. Further more, in order to choose the route with minimum bottleneck link interference, a new routing metric is proposed by combining the MAC layer and the network layer for cross layer design. Simulation results show that IA-CLR can significantly improve the performances of network such as the average end-to-end delay, the packets loss ratio and the throughput.  相似文献   

18.

The wireless sensor network (WSN) is always known for its limited-energy issues and finding a good solution for energy minimization in WSNs is still a concern for researchers. Implementing mobility to the sink node is used widely for energy conservation or minimization in WSNs which reduces the distance between sink and communicating nodes. In this paper, with the intention to conserve energy from the sensor nodes, we designed a clustering based routing protocol implementing a mobile sink called ‘two dimensional motion of sink node (TDMS)’. In TDMS, each normal sensor node collects data and send it to their respective leader node called cluster head (CH). The sink moves in the two dimensional direction to collect final data from all CH nodes, particularly it moves in the direction to that CH which has the minimum remaining energy. The proposed protocol is validated through rigorous simulation using MATLAB and comparisons have been made with WSN’s existing static sink and mobile sink routing protocols over two different geographical square dimensions of the network. Here, we found that TDMS model gives the optimal result on energy dissipation per round and increased network lifetime.

  相似文献   

19.
Nowadays, wireless sensor network (WSN) is an important component in IoT environment, which enables efficient data collection and transmission. Since WSN consists of a large number of sensor nodes, network congestion can easily occur which significantly degrades the performance of entire network. In this paper a novel scheme called SMQP (Statistical Multipath Queue-wise Preemption) routing is proposed to balance the load and avoid the congestion for ZigBee-based WSN. This is achieved by employing statistical path scheduling and queue-wise preemption with multiple paths between any source and destination node. NS2 simulation reveals that the proposed scheme significantly improves the QoS in terms of delivery ratio, end-to-end delay, and packet delivery ratio compared to the representative routing schemes for WSN such as ad hoc on-demand distance vector and ad hoc on-demand multipath distance vector scheme.  相似文献   

20.

The core objective behind this research paper is to implement a hybrid optimization technique along with proactive routing algorithm to enhance the network lifetime of wireless sensor networks (WSN). The combination of two soft computing techniques viz. genetic algorithm (GA) and bacteria foraging optimization (BFO) techniques are applied individually on destination sequence distance vector (DSDV) routing protocol and after that the hybridization of GA and BFO is applied on the same routing protocol. The various simulation parameters used in the research are: throughput, end to end delay, congestion, packet delivery ratio, bit error rate and routing overhead. The bits are processed at a data rate of 512 bytes/s. The packet size for data transmission is 100 bytes. The data transmission time taken by the packets is 200 s i.e. the simulation time for each simulation scenario. Network is composed of 60 nodes. Simulation results clearly demonstrates that the hybrid approach along with DSDV outperforms over ordinary DSDV routing protocol and it is best suitable under smaller size of WSN.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号