首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a computational study was carried out to evaluate the performance of longitudinal ventilation system equipped with an alternative jet fan with respect to traditional one in case of fire in tiled tunnel. The alternative jet fan is equipped with inclined silencers (pitch angle α = 6°) in order to reduce the Coanda effect and consequently shear stress on the tunnel ceiling. The fire was simulated setting heat flux on HGV surface. Computational fluid dynamic analysis was applied to simulate the ventilation in the unidirectional tunnel through κ–ɛ model. The comparison conducted in terms of total thrust required to prevent back-layering phenomena and numerical results were provided in terms of thrust of jet fan values, average velocity values and temperature profiles, for different tunnel slope values. Furthermore the authors have compared the critical velocity provided by CFD analysis with critical velocity provided in the literature.  相似文献   

2.
Typically, in the experimental scale road tunnel model, the air flow induced by ventilation system is provided by an external fan. In this paper, the authors have numerically simulated full and reduced-scale tunnel in order to evaluate the possibility to realize a reduced scale of a road tunnel model with a realistic ventilation system consisting of impulsive jet fans.In particular, two different types of longitudinal ventilation systems were considered, traditional and alternative. The last one was equipped with jet fans that have the inlet/outlet sections inclined at a fixed pitch angle (α=6°) toward the tunnel floor. The jet fan was simulated as a simple momentum source that provides a pressure rise (pressure drop) across them as a function of the outflow air velocity.The analyzed tunnel consists in a 800 m one directional bore with circular cross section 5.05 m radius; the jet fans were installed at 5.67 m from the floor. Furthermore a burning Heavy Good Vehicle (HGV), placed at 450 m far away the tunnel entrance, was considered. To simulate numerically the burning vehicle, the species transport equation combustion model with Eddy-Dissipation-Concept (EDC) model was adopted.In order to create a reduced-scale model from a full scale, Froude method was applied to preserve geometrical, kinematical and dynamical similitude. Temperature and axial velocity profiles, in different tunnel sections for both considered models (full and scaled) and ventilation systems, were provided. The numerical results showed a good agreement for the both ventilation systems.  相似文献   

3.
During the excavation process of underground caverns, the rational selection of the ventilation scheme is very important for the safety and health of construction workers. The flood discharge tunnel groups at the Changheba Hydropower Station are selected as a case to study the design of ventilation schemes in inclined tunnel groups; these groups are characterized by a gradient of approximately 10% and a complex intersecting relationship among the tunnels. The Computational Fluid Dynamics (CFD) method is used to simulate the fluid dynamics in tunnel groups when different ventilation schemes are employed. Four ventilation schemes with the same duct at different positions along the transverse section are formulated, and the scheme approaching the right side with most of the construction adits is adopted in engineering after a comparative analysis, as it offers a well-distributed velocity field and sufficient security distance. The study reveals that flow vortices appear in the tunnels with a long axis length ranging from 5 m to 20 m; the observation that the flow velocity on the transverse sections is away from the heading face indicates that a low-velocity area is always present in the vicinity of an air duct, and the security distance on the upstream side is 60% shorter than on the downstream side with the same air-blower when the tunnels have a 10% gradient. In addition, when the excavation distance rises 200 m, the ventilation condition in the tunnels, especially in the areas around tunnel intersections, is greatly improved by the completion of pilot tunnels and shafts in advance.  相似文献   

4.
Austrian road tunnels within the Trans-European Road Network (TERN) must fulfil the requirements of the Directive 2004/54/EC (European Commission, 2004) not later than April 2019. This regulation has to be applied to all tunnels in the TERN with a length of more than 500 m, whether they are in operation, under construction or at design stage, and aims at ensuring a minimum level of safety for road users. One of the main features of this directive is the requirement for providing an egress possibility to a safe environment every 500 m throughout the whole tunnel.The Arlberg road tunnel has a length of some 15.5 km and is in operation for more than 35 years. It is a single tube tunnel operated with bi-directional traffic, but carries a quite low traffic volume. Hence, the construction of a second tube is not really cost effective. Currently the tunnel is equipped with a transversal ventilation system with remotely controlled smoke extraction dampers providing smoke extraction every 100 m. The maximum distance between egress possibilities to a save environment is some 1500 m. Due to the high costs of a construction of a second tube or a parallel running escape gallery, a novel solution was found. The existing fresh air duct will be used as safe escape way between the existing egress possibilities. This solution has big impacts on the ventilation system and on the requirements for thermal structure protection of the new egress ways, i.e. the fresh air duct. In order to overcome this problem, massive changes in the ventilation design have to be performed, accompanied by the installation of a high-pressure water-mist system for structure protection.  相似文献   

5.
The capabilities of the ventilation systems in the two road tunnels at Dartford (UK) are analysed using a multi-scale modelling approach. Both tunnels have complex semi-transverse ventilation systems with jet fans to control longitudinal flow. The construction and ventilation systems in the tunnels are described and the current emergency ventilation strategies are presented. The analysis includes a coupling of a 1D network model with 3D components, representing the operational jet fans, built using computational fluid dynamics. The jet fans were experimentally characterized on-site and the findings were compared to the model predictions. The predicted ventilation flows for each of the emergency ventilation strategies are presented and discussed. In cold-flow conditions, ventilation velocities significantly above 3 m/s can be generated throughout the tunnels. However, it is observed that 1/3 of the flow generated in the East tunnel is diverted from the tunnel up the extract shafts. The model was used to simulate various reduced fan combinations and thus the level of redundancy in each of the systems has been estimated. It is found that an acceptable level of ventilation may be produced in the West tunnel, even if several pairs of jet fans are disabled. In the East tunnel there is less redundancy, but an acceptable level of ventilation control can be maintained with one or two jet fans disabled.  相似文献   

6.
This paper presents the results of a numerical investigation carried out on an alternative jet fan, known in literature like Banana Jet®, and it compares its fluid dynamic performances to traditional axial ventilation systems. The alternative jet fan is equipped with inlet/outlet sections inclined at a fixed pitch angle (α) toward the tunnel floor. This approach establishes an alternative solution that is able to provide a safety level equivalent to the traditional solution, in different scenarios. Both systems are installed in an one-way tunnel and two different scenarios (without vehicles and with traffic jam) are considered, in event of fire. The fire was simulated setting heat flux on Heavy Good Vehicle (HGV) surface and comprehensive of radiative heat flux. Computational Fluid-Dynamic (CFD) are applied to simulate the ventilation in the unidirectional tunnel through kε model, including temperature fields. The results show, for both scenarios, the existence of an optimal pitch angle which offers advantages in comparison with the traditional system (α = 0°) in terms of plant and running costs. In the next paper, the influence of the radiative heat flux for the optimal pitch angle will be explicitly considered.  相似文献   

7.
A water system, consisting of several water mist nozzles, has been installed in a reduced-scale tunnel. Its effectiveness in blocking fire-induced smoke and heat is tested, with and without longitudinal ventilation. A total of 14 fire tests have been carried out, with 250 ml methanol in an iron tray (25 cm × 20 cm) as fuel. Temperatures have been measured by 30 thermocouples, located upstream and downstream of the fire location. The aim is to assess the effectiveness of the water system in preventing smoke spread and in reducing the temperature in the tunnel. Interaction of the water with the fire is avoided. The impact of water pressure, ventilation velocity and nozzle arrangement on the effectiveness in smoke blocking and temperature reduction is discussed. The result confirms that the water system effectively reduces the temperatures and prevents smoke spreading in the absence of longitudinal ventilation. However, strong longitudinal ventilation (0.8 m/s ventilation velocity in the reduced-scale tunnel, corresponding to critical velocity in full-scale (1:10) tunnel) reduces the effectiveness in blocking the smoke spreading by the water system, although the temperature reduction downstream the water system remains in place. Higher water pressure makes the cooling effect stronger, because more and smaller water droplets are injected into the tunnel. For a given level of water pressure level, the impact of the nozzle row configuration is small in the tests.  相似文献   

8.
Environmental safety issues and ventilation problems caused by the construction of urban tunnel have increasingly been attracting people’s attention. Previous studies in China have mainly focused on vehicle emissions and ventilation control technologies in road tunnels, resulting in a research gap on urban tunnel ventilation engineering design. Therefore, a detailed monitoring investigation was conducted from May 22 to June 2, 2013 in Changsha Yingpan Road Tunnel, China. The study aim was to measure the traffic characteristics, air velocity and the carbon monoxide (CO), nitrogen oxides (NOx) and fine particulate matter (PM2.5) concentrations in this tunnel, which has two lanes per bore and multiple ramps. Measurement results show that during the workday morning peak, the maximum traffic flow was 1560 passenger-car-unit/h per lane with vehicle speed around 33.6 km/h in the eastbound tunnel, the average air velocity was 3.07 m/s, and the proportion of the light-duty vehicles (LDV) was 97.3%. Under the traffic force (not open fan), the CO and NO average concentrations at the main tunnel outlet were 20.3 ppm and 1.65 ppm, respectively. The gas pollutant concentrations are effectively controlled within the multiple-ramps tunnel and the design air volume flow is noticeably reduced. The traffic air flow was found to provide 32.5% of the required air volume to dilute NOx in blocked traffic condition (vehicle speed of 10 km/h). In addition, the PM2.5 concentration is mainly affected by the value of background outside the tunnel. The result can provide a quantitative assessment method to support pollutant concentration control and contribution of requested air volume by traffic flow in urban complex structure tunnel.  相似文献   

9.
纵向通风目前是我国长隧道使用最多的通风排烟方式。通过1∶ 10隧道模型火灾排烟试验,利用激光片光观测火灾烟气分层结构,分析了纵向通风对火灾烟气分层结构的影响;通过数值模拟,研究了隧道采用纵向通风排烟的效果。结果表明:在无风情况下,火灾初期烟气能够较好地维持在隧道顶部,与空气分层界限明显;开启纵向排烟后,能够有效抑制火灾烟气向火源上游蔓延,但烟气分层结构遭到破坏并随着风速增加逐渐消失,火源下游区域能见度下降;纵向排烟风速维持在临界风速及以下,可降低纵向风对烟气分层的影响。  相似文献   

10.
In order to investigate the effect of principal stress orientation on the stability of regular tunnels and cracked tunnels, experiments by using square specimens with a centralized small tunnel were conducted, and the corresponding numerical study as well as photoelastic study were implemented. Two kinds of materials, cement mortar and sandstone, were used to make tunnel models, and three types of tunnel models were studied, i.e. (1) regular tunnel models loaded by different orientation’s principal stresses, (2) tunnel models with various orientation’s radial cracks in the spandrel under compression, and (3) tunnel models with a fixed radial crack loaded by various orientation’s principal stresses. In the numerical study, the stress intensity factors of the radial cracks were calculated, and the results agree well with the test results. For regular tunnels, when the angle θ between the major principal stress and the tunnel symmetrical axis is 45°, the corresponding tunnel is the most unfavorable; for tunnels with a radial crack in the spandrel, when the angle β between the crack and the tunnel wall is 135°, the corresponding tunnel is the most unfavorable; for tunnels with a β = 130° radial crack, when θ = 0° or θ = 70°, the compressive strengths of the tunnel models are comparatively low, whereas when θ = 90°, it is the highest.  相似文献   

11.
Three full-scale model experiments were conducted in a unidirectional tube, which is a part of a metro tunnel with one end connected to an underground metro station and the other end opened to outside in Chongqing, PR China. Three fire HRRs, 1.35 MW, 3 MW and 3.8 MW were produced by pool fires with different oil pan sizes in the experiments. Temperature distributions under the tunnel ceiling along the longitudinal direction were measured. At the same time, CFD simulations were conducted under the same boundary conditions with the experiments by FDS 5.5. In addition, more FDS simulation cases were conducted after the FDS simulation results agreed with the experimental results. The simulation results show that the smoke temperature and the decay rate of the temperature distribution under the tunnel ceiling along the longitudinal direction increase as HRR increases. The smoke exhausts effectively from the tunnel under mechanical ventilation system, whether the emergency vent is activated as a smoke exhaust or an air supply vent. The operation mode of the mechanical ventilation system depends on the evacuation route.  相似文献   

12.
The characteristics of a ceiling jet of an inclined tunnel in a fire will be studied and reported in this paper. Scale modeling experiments on a ceiling jet in a model tunnel of length 3.0 m, width 0.8 m and height 1.0 m inclined at different angles of 0°, 10°, 20° and 30° were carried out. Numerical studies by large eddy simulation were then performed. Both experimental observation and numerical simulation indicated that the characteristics of the temperature and velocity fields near the upper tunnel are different from those obtained using the empirical equations reported in the literature. Another set of empirical equations for gas temperature and flow velocity along the tunnel were fitted by experimental data. These derived empirical equations are useful for estimating the temperature and flow velocity patterns for the ceiling jet in an inclined tunnel with an angle within the range 0–30°.  相似文献   

13.
《Fire Safety Journal》2006,41(2):144-154
It has recently been shown that lidar (LIght Detection and Ranging) can effectively detect smoke plumes from small bonfires up to distances of 6.5 km, so that the technique can be used for wildfire surveillance. The aim of the present work is to describe a method for calculating the optimal location and minimum number of lidar stations required for the surveillance of a given forest area, taking the hilly terrain of Sintra-Cascais Nature Park (Portugal) as an example. The placement and horizontal scanning of the lidar sensors must be such that the laser beam passes over the ground, while keeping sufficiently low to enable early smoke plume detection, before the smoke is dispersed by the wind. Simultaneously, the laser beam should not hit the ground at distances shorter than the instrument range. To solve the problem, a terrain rendering was created and the best laser-beam zenith angle for each azimuth and the effective range covered by each lidar were calculated. The computations showed that 95% of the 146 km2 of the Nature Park area can be covered by seven detectors with the laser beams scanning at a height of 50 m or less above ground.  相似文献   

14.
The use of terrestrial laser scanning technology in engineering surveys is gaining an increasing interest due to the very high spatial density of the acquired data. Recent improvements regarding the speed, accuracy, software algorithms and the fall in price have introduced a high potential for large scale applications of this technology in highly demanding engineering environments such as tunnels. Railway tunnels, in particular those of a long length, create challenges for surveyors due to their elongation to obtain satisfactory geometry of the scanned data. The purpose of this paper is to give an optimal solution for surveying tunnel geometry using laser scanning technology to reliably inspect railway tunnels and create “as-built” documentation.The proposed methodology provides optimisation of scanning parameters, scans registration, the georeferencing approach and the survey control network design. The maximal size of the scanner shifting along the tunnel alignment is primarily conditioned by factors including the incidence angle of the laser beam and the point density distribution. The authors introduce the so-called arbitrary georeferencing approach in long tunnel scanning that controls the point cloud geometric distortions to the required limits and contributes to time and material resources savings. Optimal design of the survey control network ensures the required positional accuracy and the reliability of the measurements, together with a cost effective approach to tunnels surveying.The proposed methodology is followed by the empirical results of the modelling and profiling of 12 tunnels in a single track railway. The lengths of these tunnels are from 60 m to 1260 m, with a total length of 3.5 km. Due to the specific geometry of the case study tunnels, the maximal favourable laser incidence angle is 78° with a distance of 13 m and consequently the optimal size of the scanner shifting along the tunnel alignment is 26 m. The survey control network is designed with the condition that the optimal reliability factors are within the required limits for engineering networks. A priori estimation of the control network positional uncertainty and a posteriori adjustment results shows that the achieved positional accuracy of the control points is approximately five times better than the requested absolute accuracy of the tunnel model: σm = 2 cm. On the largest tunnel example it is shown that the arbitrary georeferencing approach assures that the optimal registration error size is within the requested limits.  相似文献   

15.
This paper investigates the buoyancy-driven smoke flow layering length (both upstream and downstream) beneath the ceiling with combination of point extraction and longitudinal ventilation in tunnel fires. A theoretical model is developed based on previous back-laying model with only longitudinal ventilation, with modified actual heat release rate, as well as modified upstream and downstream opposing longitudinal air flow velocities by the induced flow velocity due to point extraction. Experiments are carried out in a reduced scale model tunnel with dimensionless of 72 m×1.5 m×1.3 m. A LPG porous gas burner is used as fire source. The smoke flow layering length both upstream and downstream are identified based on temperature profiles measured along the ceiling, for different experiment conditions. CFD simulations with FDS are also performed for the same scenarios. Results show that with combination of point extraction and longitudinal ventilation, the smoke flow layering length is not symmetric where it is longer downstream than that upstream. The upstream smoke layering length decreases, while the downstream layering length increases with increase in longitudinal ventilation velocity; and they both decrease with increase in point extraction velocity. The predictions by the proposed theoretical model agree well with the measurements and simulation results.  相似文献   

16.
《Fire Safety Journal》2005,40(6):506-527
Large-scale fire tests were carried out with heavy goods vehicle (HGV) cargos in the Runehamar tunnel in Norway. The tunnel is a decommissioned, two-way-asphalted road tunnel that is 1600 m long, 6 m high and 9 m wide, with a slope varying between 0.5% uphill and 1% downhill. In total four tests were performed with fire in an HGV set-up and a longitudinal ventilation flow of approximately 3 m/s. In three tests, mixtures of different cellulose and plastic materials were used; in the fourth test a commodity consisting of furniture and fixtures was used. In all tests the mass ratio was approximately 82% cellulose and 18% plastic. A polyester tarpaulin covered the cargo.One purpose of the large-scale tests was to obtain new relevant gas temperature-time data from large-scale HGV fires in tunnels. There is presently a lack of such information for road tunnels. The maximum heat release rates produced by the four different fire loads varied between 66 and 202 MW resulting in maximum gas temperatures at the ceiling ranging between 1281 and 1365 °C. A comparison with literature values shows that the gas temperatures obtained here are uniformly higher than those obtained in other similar large-scale test series conducted using solid materials. A mathematical correlation of a temperature–time curve is given and this is the best representation of the measured temperature and a combination of frequently used temperature curves for tunnels (the HC curve and the RWS curve).  相似文献   

17.
Cross-borders smuggling tunnels enable unmonitored movement of people, drugs and weapons and pose a very serious threat to homeland security. Recent advances in strain measurements using optical fibers allow the development of smart underground security fences that could detect the excavation of smuggling tunnels. This paper presents the first stages in the development of such a fence using Brillouin optical time domain reflectometry (BOTDR). Two fiber optic layouts are considered and evaluated in a feasibility study that includes evaluation of false detection and sensitivity: (1) horizontally laid fiber buried at a shallow depth, and (2) fibers embedded in vertical mini-piles. In the simulation study, two different ground displacement models are used in order to evaluate the robustness of the system against imperfect modeling. In both cases, soil–fiber and soil-structure interactions are considered. Measurement errors, and surface disturbances (obtained from a field test) are also included in the calibration and validation stages of the system. The proposed detection system is based on wavelet decomposition of the BOTDR signal, followed by a neural network that is trained to recognize the tunnel signature in the wavelet coefficients. The results indicate that the proposed system is capable of detecting even small tunnel (0.5 m diameter) as deep as 20 m (under the horizontal fiber) or as far as 10 m aside from the mini-pile (vertical fiber), if the volume loss is greater than 0.5%.  相似文献   

18.
《Energy and Buildings》2006,38(3):174-180
In order to respond the suggestions made in the previous works, such as (1) improving the design of the rooftop ventilator commonly used in Taiwan, (2) making the “push–pull” airflow model in the ventilation duct effective for the bathroom ventilation and (3) combining the energy demands of the ventilator with renewable energy to reduce energy consumption, this study develops a prototype of the rooftop turbine ventilator powered by hybrid wind and photovoltaic energy. A low-speed wind tunnel experiment is performed to investigate the prototype's ventilation performance. The experimental results indicate installing an inner fan at low outdoor wind speed (0 and 5 m/s) increases the ventilation rate. The ventilation rate was not improved by installing an inner fan at a high outdoor wind speed. A rated rotation speed close to 1500 rpm is highly recommended when installing the inner fan. This study also introduces the general application modes of the proposed ventilator, and their electricity specifications.  相似文献   

19.
Understanding the characteristics of ceiling jet flow is important because most fire detectors and suppression devices are designed to operate within the ceiling jet; the increases in temperature and smoke concentration within the ceiling jet become trigger occupants to begin fire-fighting action or to evacuation. A series of pool fire tests was conducted using a flat, unconfined model ceiling with dimensions of 2.5 m (D)×3.0 m (L) and changing the ceiling inclination angle of up to 40°. A single ceiling height is used. Two fire heat release rates were used to evaluate the effects: one with and the other without the flame tip touching the inclined ceiling under a steady-state condition. Maximum temperature and its position were determined based on the measurement using a rake consisting of 0.2-mm-diameter chromel–alumel thermocouples. The maximum velocity and its position were obtained by the particle image velocimetry method. These data were compared with the velocities obtained using a bi-directional flow probe and the relationship between them was clarified. Empirical formulae for the temperature rise and velocity versus the radial distance from the plume impingement point along the steepest run in the upward direction were developed considering the effect of the inclination angle. Variations in the Froude number and the Richardson number with radial distance were clarified with and without the flame tip touching the inclined ceiling.  相似文献   

20.
The accurate computational modelling of airflows in transport tunnels is needed for regulations compliance, pollution and fire safety studies but remains a challenge for long domains because the computational time increases dramatically. We simulate air flows using the open-source code FDS 6.1.1 developed by NIST, USA. This work contains two parts. First we validate FDS6’s capability for predicting the flow conditions in the tunnel by comparing the predictions against on-site measurements in the Dartford Tunnel, London, UK, which is 1200 m long and 8.5 m in diameter. The comparison includes the average velocity and the profile downstream of an active jet fan up to 120 m. Secondly, we study the performance of the multi-scale modelling approach by splitting the tunnel into CFD domain and a one-dimensional domain using the FDS HVAC (Heating, Ventilation and Air Conditioning) feature. The work shows the average velocity predicted by FDS6 using both the full CFD and multi-scale approaches is within the experimental uncertainty of the measurements. Although the results showed the prediction of the downstream velocity profile near the jet fan falls outside the on-site measurements, the predictions at 80 m and beyond are accurate. Our results also show multi-scale modelling in FDS6 is as accurate as full CFD but up to 2.2 times faster and that computational savings increase with the length of the tunnel. This work sets the foundation for the next step in complexity with fire dynamics introduced to the tunnel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号