首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Due to the limitation of node energy resources, the management of energy consumption is one of the most important problems of the internet of things (IoT). Therefore, many studies have tried to optimize and manage energy consumption by focusing on different techniques. Although each of these studies has improved and optimized energy consumption, there are many important problems, including maintaining traffic balance and energy consumption of network nodes. Therefore, a new method is necessary to maintain the load and energy balancing of network nodes. Therefore, this paper introduces energy and load balancing routing protocol for IoT (ELBRP) based on the development of the RPL routing protocol and the efficiency of data distribution technique. The ELBRP performance has three steps. In the first step, along with the process of sending DODAG information object (DIO) messages, the status of network nodes is evaluated. In the second step, the DODAG communication graph is formed according to the ELBRP. In the third step, data transmission is done according to the distribution technique with the goal of balancing traffic and energy. The simulation results using cooja simulator showed the superiority of ELBRP in improving energy consumption and successful delivery ratio, reducing delay and increasing the network lifetime compared to the similar methods.  相似文献   

2.

A mobile ad hoc network (MANET) is a collection of wireless mobile nodes that can communicate without a central controller or fixed infrastructure. Due to node mobility, designing a routing protocol to provide an efficient and suitable method to route the data with less energy consumption, packet drop and to prolong the network lifetime has become a challenging issue in MANETs. In MANETs, reducing energy consumption and packet loss involves congestion control and load balancing techniques. Thus, this paper introduces an efficient routing technique called the multipath load balancing technique for congestion control (MLBCC) in MANETs to efficiently balance the load among multiple paths by reducing the congestion. MLBCC introduces a congestion control mechanism and a load balancing mechanism during the data transmission process. The congestion control mechanism detects the congestion by using an arrival rate and an outgoing rate at a particular time interval T. The load balancing mechanism selects a gateway node by using the link cost and the path cost to efficiently distribute the load by selecting the most desirable paths. For an efficient flow of distribution, a node availability degree standard deviation parameter is introduced. Simulation results of MLBCC show the performance improvements in terms of the control overhead, packet delivery ratio, average delay and packet drop ratio in comparison with Fibonacci sequence multipath load balancing, stable backbone-based multipath routing protocol and ad hoc on demand multipath distance vector routing. In addition, the results show that MLBCC efficiently balances the load of the nodes in the network.

  相似文献   

3.
Wireless sensor network consists of sensor nodes with battery operated device. The key challenges in the wireless sensor network are energy consumption and routing optimization. This work presents the cluster based load balancing (CBLB) routing protocol. The proposed routing protocol is used to minimize the energy consumption and increase the routing performance. It avoids the routing robustness, delay and increases the delivery rate and network performance. In existing techniques, different routing protocols such as LEACH, HEED and MESTER were used to increase the network performance and to decrease the energy consumption. But these existing techniques did not satisfy the performance requirements of wireless sensor networks. Hence, there is a requirement to develop a technique that meets the QoS requirements and needs of wireless sensor network. The proposed CBLB routing protocol creates a cluster head in the decentralized network and the cluster head will be used to distribute the workload evenly to the cluster members for reducing the energy consumption in wireless sensor network. Experimental results analyze the performance of the proposed protocol with the different existing protocols. The proposed protocol achieves high throughput, delivery rate and reduces the energy consumption, delay and routing overhead.  相似文献   

4.
随着网络负载增加,经典的TPGF( Two-Phase geographic Greedy Forwarding)算法难以找到节点分离路径,会导致网络吞吐量、投递率以及端到端时延性能下降。此外,当网络拓扑变动不大时, TPGF中每条路径所包含节点要消耗比其他节点更多的能量,会导致其过快死亡,从而影响网络性能。为此,将联合网络编码技术引入 TPGF,提出一种编码与能量感知的 TPGF 路由算法( NE-TPGF)。该算法综合考虑节点的地理位置、编码机会、剩余能量等因素,同时利用联合网络编码技术进一步扩展编码结构,充分利用网络编码优势来建立相对最优的传输路径。仿真结果表明, NE-TPGF能够增加编码机会,提高网络吞吐量和投递率,降低端到端时延,并且还有利于减少和平衡节点的能量消耗。  相似文献   

5.

Extensive use of sensor and actuator networks in many real-life applications introduced several new performance metrics at the node and network level. Since wireless sensor nodes have significant battery constraints, therefore, energy efficiency, as well as network lifetime, are among the most significant performance metrics to measure the effectiveness of given network architecture. This work investigates the performance of an event-based data delivery model using a multipath routing scheme for a wireless sensor network with multiple sink nodes. This routing algorithm follows a sink initiated route discovery process with the location information of the source nodes already known to the sink nodes. It also considers communication link costs before making decisions for packet forwarding. Carried out simulation compares the network performance of a wireless sensor network with a single sink, dual sink, and multi sink networking approaches. Based on a series of simulation experiments, the lifetime aware multipath routing approach is found appropriate for increasing the lifetime of sensor nodes significantly when compared to other similar routing schemes. However, energy-efficient packet forwarding is a major concern of this work; other network performance metrics like delay, average packet latency, and packet delivery ratio are also taken into the account.

  相似文献   

6.
Han  Zhijie  Wang  Yalu  Zhao  Hui 《Journal of Signal Processing Systems》2019,91(10):1091-1101

With the massive application of Web services and streaming media, Web cluster deployment in a single physical area can no longer meet the network requirements. Currently, with a range of WAN Web cluster deployment, the delegation points can access the nearest Web cluster and reduce the average distance of data flow, thus reducing network latency. Therefore, it is particularly important for cluster load balancing to quickly obtain access node information and redirect Web clusters that need to be accessed by the nodes. At the same time, the power consumption of computers and the power consumption of multi-area deployment of Web clusters are huge, and more computer resources are wasted in the low-access period, so it is also essential to reduce the power consumption of the entire load balancing. In order to solve the above two problems, this paper proposes a web load balancing method which can reduce the energy consumption of the cluster and DNS collaboration. It provides information for accessing the nodes to the load balancing and uses the cosine distance to quickly locate the web clusters that the nodes need to access. Meanwhile, Cluster energy consumption strategy to reduce the energy consumption of the entire cluster.

  相似文献   

7.
提出一种适合于路由表大小为O(logN) 的结构化P2P协议的负载均衡方法,该方法采用负载感知的被动式路由表维护算法和路由算法提高轻载结点作为路由中继结点的概率,并通过一种缓存机制来降低承载热点文件的结点的请求负载.实验结果表明,在用户查询服从Zipf分布的环境下,该负载均衡方法可使系统达到较好的负载均衡.  相似文献   

8.
Energy efficiency has become an important design consideration in geographic routing protocols for wireless sensor networks because the sensor nodes are energy constrained and battery recharging is usually not feasible. However, numerous existing energy‐aware geographic routing protocols are energy‐inefficient when the detouring mode is involved in the routing. Furthermore, most of them rarely or at most implicitly take into account the energy efficiency in the advance. In this paper, we present a novel energy‐aware geographic routing (EAGR) protocol that attempts to minimize the energy consumption for end‐to‐end data delivery. EAGR adaptively uses an existing geographic routing protocol to find an anchor list based on the projection distance of nodes for guiding packet forwarding. Each node holding the message utilizes geographic information, the characteristics of energy consumption, and the metric of advanced energy cost to make forwarding decisions, and dynamically adjusts its transmission power to just reach the selected node. Simulation results demonstrate that our scheme exhibits higher energy efficiency, smaller end‐to‐end delay, and better packet delivery ratio compared to other geographic routing protocols. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Mobile ad hoc network consists of a group of mobile nodes that can communicate with each other without any infrastructure. Clustering of the mobile nodes ensures efficient use of available bandwidth and high network throughput. Various clustering schemes are developed to improve the energy efficiency and lifetime of the network. However, there is an increase in the energy consumption with the increase in the number of clusters for forwarding data. This paper presents an energy‐efficient clustering approach for collaborative data forwarding in mobile ad hoc network. The cluster head (CH) is selected based on the processing capability of the nodes and link connection metrics. The CH receives the data from the server and forwards the data to the member nodes at a corresponding data rate of the nodes. Data offloading technique manages the data traffic in the network. The CH rejoining approach enables load balancing in the network. The proposed clustering approach achieves a significant reduction in the energy consumption and data traffic and improvement in the throughput rate through stable routing.  相似文献   

10.
Current routing protocols in wireless sensor and actor networks (WSANs) shows a lack of unification for different traffic patterns because the communication for sensor to actor and that for actor to actor are designed separately. Such a design poses a challenge for interoperability between sensors and actors. With the presence of rich-resource actor nodes, we argue that to improve network lifetime, the problem transforms from reducing overall network energy consumption to reducing energy consumption of constrained sensor nodes. To reduce energy consumption of sensor nodes, especially in challenging environments with coverage holes/obstacles, we propose that actor nodes should share forwarding tasks with sensor nodes. To enable such a feature, efficient interoperability between sensors and actors is required, and thus a unified routing protocol for both sensors and actors is needed. This paper explores capabilities of directional transmission with smart antennas and rich-resource actors to design a novel unified actor-oriented directional anycast routing protocol (ADA) which supports arbitrary traffic in WSANs. The proposed routing protocol exploits actors as main routing anchors as much as possible because they have better energy and computing power compared to constraint sensor nodes. In addition, a directional anycast routing approach is also proposed to further reduce total delay and energy consumption of overall network. Through extensive experiments, we show that ADA outperforms state-of-the-art protocols in terms of packet delivery latency, network lifetime, and packet reliability. In addition, by offer fault tolerant features, ADA also performs well in challenging environments where coverage holes and obstacles are of concerns.  相似文献   

11.
Cognitive radio sensor network (CRSN) is an intelligent and reasonable combination of cognitive radio technology and wireless sensor networks. It poses significant challenges to the design of topology maintenance techniques due to dynamic primary-user activities, which in turn decreases the data delivery performance of the network as well as it’s lifetime. This paper aims to provide a solution to the CRSN clustering and routing problem using an energy aware event-driven routing protocol (ERP) for CRSN. Upon detection of an event, the ERP determines eligible nodes for clustering according to local positions of CRSN nodes between the event and the sink and their residual energy levels. Cluster-heads are selected from the eligible nodes according to their residual energy values, available channels, neighbors and distance to the sink. In ERP, cluster formation is based on relative spectrum awareness such that channels with lower primary user appearance probability are selected as common data channels for clusters. For data routing, ERP employs hop-by-hop data forwarding approach through the CHs and primary/secondary gateways towards the sink. Through extensive simulations, we demonstrate that the proposed ERP provides with better network performances compared to those of the state-of-the-art protocols under a dynamic spectrum-aware data transmission environment.  相似文献   

12.
Aiming at the problem that the location distribution of cluster head nodes filtered by wireless sensor network clustering routing protocol was unbalanced and the data transmission path of forwarding nodes was unreasonable,which would increase the energy consumption of nodes and shorten the network life cycle,a clustering routing protocol based on improved particle swarm optimization algorithm was proposed.In the process of cluster head election,a new fitness function was established by defining the energy factor and position equalization factor of the node,the better candidate cluster head node was evaluated and selected,the position update speed of the candidate cluster head nodes was adjusted by the optimized update learning factor,the local search and speeded up the convergence of the global search was expanded.According to the distance between the forwarding node and the base station,the single-hop or multi-hop transmission mode was adopted,and a multi-hop method was designed based on the minimum spanning tree to select an optimal multi-hop path for the data transmission of the forwarding node.Simulation results show that the clustering routing protocol based on improved particle swarm optimization algorithm can elect cluster head nodes and forwarding nodes with more balanced energy and location,which shortened the communication distance of the network.The energy consumption of nodes is lower and more balanced,effectively extending the network life cycle.  相似文献   

13.
Li  Xiao-ru  Jiang  He 《Wireless Personal Communications》2022,125(3):2101-2127

Wireless Sensor Network (WSN) is one of the most significant technologies that typically involves of a large number of wireless sensor nodes with sensing, communications and computation capabilities. The sustained operation of WSN is achieved through the efficient consumption of node energy. The WSN is used to many applications especially military, science and medical. The WSN performance may be affect some issues such as load balancing, security and reduce energy consumption of the nodes. These issues must be reduced to enhance performance of the WSN structure in different applications. Henceforth, in this paper, Hybrid Emperor Penguin Optimization (EPO) is developed to solve load balancing, security enhancement and reduce energy consumption in WSN. The hybrid EPO is combined with Atom Search Optimization (ASO) algorithm, it is used to improve the updating function of the EPO algorithm. Three major objective functions can be considered towards improve the performance of WSN like load balancing, security enhancement in addition energy consumption reduction. The load balancing can be achieved by optimal clustering scheme which attained applying proposed hybrid EPO. The security also enhanced in WSN with the help of hybrid EPO by computing security measures. Similarly, energy consumption of WSN is achieved optimal routing scheme by hybrid EPO algorithm. The proposed methodology is developed to manage three objectives which is a major advantage. The projected technique can be implemented by NS2 simulator for validation process. The projected technology is contrasted with the conventional methods such as EPO and ASO respectively. The projected technique is evaluated in terms of delivery ratio, network lifetime, overhead, energy consumption, throughput, drop and delay.

  相似文献   

14.
In wireless sensor network, when the nodes are mobile, the network structure keeps on changing dynamically, that is, new nodes enter the network and old members exit the network. As a result, the path from one node to the other varies from time to time. In addition, if the load on a particular part of the network is high, then the nodes will not be capable of transmitting the data. Thus, data delivery at the destination will be unsuccessful. Moreover, the part of the network involved in transmitting the data should not be overloaded. To overcome these issues, a hybrid routing protocol and load balancing technique is discussed in this paper for the mobile data collectors in which the path from source to destination is ensured before data transmission. The hybrid routing protocol that combines the reactive and proactive approach is used to enhance gradient based routing protocol for low power and lossy networks. This protocol can efficiently handle the movement of multiple sinks. Finally, load balancing is applied over the multiple mobile elements to balance the load of sensor nodes. Simulation results show that this protocol can increase the packet delivery ratio and residual energy with reduced delay and packet drop.  相似文献   

15.
任克强  余建华  谢斌 《电视技术》2015,39(13):69-72
为了降低无线传感器网络(WSN)的能耗,延长网络的生存周期,提出一种多簇头双工作模式的分簇路由算法.算法对低功耗自适应集簇分层(LEACH)协议作了以下改进:采用多簇头双工作模式来分担单簇头的负荷,以解决单簇头因能耗较大而过早消亡的问题;选举簇头时充分考虑节点位置和节点剩余能量,并应用粒子群优化(PSO)算法优化簇头的选举,以均衡网络内各节点的能耗;建立簇与簇之间的数据传输路由,以减少簇间通信的能耗.仿真结果表明,算法有效降低了网络的能耗,延长了网络的生存周期.  相似文献   

16.
We consider the problem of localized energy aware routing in mobile ad hoc networks. In localized routing algorithms, each node forwards a message based on the position of itself, its neighbors and the destination. The objective of energy aware routing algorithms is to minimize the total power for routing a message from source to destination or to maximize the total number of routing tasks that a node can perform before its battery power depletes. In this paper we propose new localized energy aware routing algorithms called OLEAR. The algorithms have very high packet delivery rate with low packet forwarding and battery power consumption. In addition, they ensure good energy distribution among the nodes. Finally, packets reach the destination using smaller number of hops. All these properties make our algorithm suitable for routing in any energy constrained environment. We compare the performance of our algorithms with other existing energy and non‐energy aware localized algorithms. Simulation experiments show that our algorithms present comparable energy consumption and distribution to other energy aware algorithms and better packet delivery rate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Greedy geographic routing is attractive in wireless sensor networks because of its efficiency and scalability. This paper presents an up-down links dualpath greedy routing (UDLDGR) protocol for wireless sensor networks. The routing protocol not only reserves the features of greedy forwarding algorithm, which is simple, efficient, but also uses different relay nodes to serve as routing nodes for up and down routing paths, makes the energy consumption more balanced. The greatest advantage of UDLDGR is it trades off only small cost for the source node to obtain two different transmission paths information. The multipath strengthens the network reliability, such as load balancing and robustness to failures. Our simulation results show that UDLDGR can improve system lifetime by 20–100% compared to single path approaches.  相似文献   

18.
Recently, underwater wireless sensor networks (UWSNs) have attracted much research attention to support various applications for pollution monitoring, tsunami warnings, offshore exploration, tactical surveillance, etc. However, because of the peculiar characteristics of UWSNs, designing communication protocols for UWSNs is a challenging task. Particularly, designing a routing protocol is of the most importance for successful data transmissions between sensors and the sink. In this paper, we propose a reliable and energy‐efficient routing protocol, named R‐ERP2R (Reliable Energy‐efficient Routing Protocol based on physical distance and residual energy). The main idea behind R‐ERP2R is to utilize physical distance as a routing metric and to balance energy consumption among sensors. Furthermore, during the selection of forwarding nodes, link quality towards the forwarding nodes is also considered to provide reliability and the residual energy of the forwarding nodes to prolong network lifetime. Using the NS‐2 simulator, R‐ERP2R is compared against a well‐known routing protocol (i.e. depth‐based routing) in terms of network lifetime, energy consumption, end‐to‐end delay and delivery ratio. The simulation results proved that R‐ERP2R performs better in UWSNs.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
王茜  李振波  陈佳品 《半导体光电》2016,37(1):243-247,283
针对本振光为高斯分布, 接收信号光经望远镜聚焦后为艾里分布的情况, 首先对高斯和艾里函数用数值计算的方式得到两种光斑最大外差效率: 当艾里斑直径和高斯光束束腰直径之比为1.719时, 最大外差效率为81.45%; 然后介绍了光的标量衍射和Zernike像差理论, 分析了夫琅禾费衍射适用于相干聚焦光场的条件, 计算了平面、高斯、艾里光场和Zernike像差的采样要求, 对存在各种像差的光学系统的外差效率进行了仿真, 分析了倾斜、离焦、像散、慧差、球差等基本像差及组合像差对外差效率的影响, 结果表明: 各种像差对外差效率的影响从低到高分别为像散、倾斜、离焦、慧差和球差; 3dB外差效率损失对应相干系统的指标为跟踪误差优于1μrad(RMS), 组合波像差优于0.1λ。研究结果对相干激光通信系统的链路损耗分配和光机系统的工程设计具有指导意义。  相似文献   

20.
Mobile ad hoc multipath routing protocols have attracted considerable research attention over the past decade, but the limited battery life of nodes remains a significant obstacle. Many researchers have designed multipath routing protocols that balance the data load between the generated paths, but there is always some tradeoff between conserving the nodes’ energy and delivering data. In this paper, I introduce a load balancing (LB) multipath routing protocol based on maximal minimal nodal residual energy (MMRE) in the ad hoc on-demand multipath distance vector (AOMDV) protocol. The proposed LBMMRE-AOMDV protocol evaluates the generated paths based on the maximal nodal residual energy and the actual number of packets that could be transmitted over that path without depleting the nodes’ energy. The performance of the proposed protocol was tested and evaluated using different scenarios and performance metrics, and achieved good results compared with MMRE-AOMDV and AOMDV. In particular, the proposed method can increase packet delivery and decrease the number of dead nodes, thus reducing the probability of network portioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号