共查询到17条相似文献,搜索用时 72 毫秒
1.
针对鲁棒主成分分析(RPCA)问题,为了降低RPCA算法的时间复杂度,提出了牛顿-软阈值迭代(NSTI)算法。首先,使用低秩矩阵的Frobenius范数与稀疏矩阵的l1-范数的和来构造NSTI算法的模型;其次,同时使用两种不同的优化方式求解模型的不同部分,即用牛顿法快速计算出低秩矩阵,用软阈值迭代算法快速计算出稀疏矩阵,交替使用这两种方法计算出原数据的低秩矩阵和稀疏矩阵的分解;最后,得到原始数据的低秩特征。在数据规模为5 000×5 000,低秩矩阵的秩为20的情况下,NSTI算法和梯度下降(GD)算法、低秩矩阵拟合(LMaFit)算法相比,时间效率分别提高了24.6%、45.5%。对180帧的视频前景背景进行分离,NSTI耗时3.63 s,时间效率比GD算法、LMaFit算法分别高78.7%、82.1%。图像降噪实验中,NSTI算法耗时0.244 s,所得到的降噪后的图像与原始图像的残差为0.381 3,与GD算法、LMaFit算法相比,时间效率和精确度分别提高了64.3%和45.3%。实验结果证明,NSTI算法能够有效解决RPCA问题并提升RPCA算法的时间效率。 相似文献
2.
3.
4.
为提高图像边缘检测的准确性和鲁棒性,提出一种基于鲁棒主成分分析(RPCA)的Canny边缘检测算法。该算法对图像进行RPCA分解得到图像的主成分和稀疏成分,利用Canny算子对主成分进行边缘检测,从而实现对图像的边缘检测。该算法将图像的边缘检测问题转化为图像主成分的边缘检测问题,消除了图像信息中“污点”对检测结果的干扰,抑制了噪声。仿真实验结果表明,该算法在边缘检测的准确性和鲁棒性方面优于Log边缘检测算法、Canny边缘检测算法和Susan边缘检测算法方法。 相似文献
5.
基于鲁棒主成分分析的人脸子空间重构方法 总被引:1,自引:0,他引:1
子空间方法是人脸识别中的经典方法,其基本假设是人脸图像处于高维图像空间的低维子空间中.但是,由于光照变化、阴影、遮挡、局部镜面反射、图像噪声等因素的影响,使得子空间假设难以满足.为此,提出一种基于鲁棒主成分分析的人脸子空间重构方法.该方法将人脸图像数据矩阵表示为满足子空间假设的低秩矩阵和表征光照变化、阴影、遮挡、局部镜面反射、图像噪声等因素的误差矩阵之和,利用鲁棒主成分分析法求解低秩矩阵和误差矩阵.实验结果表明,文中方法能够有效地重构人脸图像的低维子空间. 相似文献
6.
目的 运动目标检测在许多计算机视觉任务中发挥了重要的作用。背景建模是运动目标检测中传统而又常用的方法。然而,许多背景建模方法是基于像素点的,对背景方面的考虑过于简单,难于处理真实视频。最近,将基于低秩和稀疏分解的鲁棒主成分分析应用于运动目标检测成为计算机视觉领域内的研究热点。为使更多国内外运动目标检测的研究者对鲁棒主成分分析方法进行探索和应用,本文对其进行系统综述。方法 融入最新研究进展,基于误差抑制、贝叶斯理论、时间和空间信息、多特征和多因素耦合,对各种国内外的鲁棒主成分分析模型进行归纳,并理论分析其优缺点。结果 本文采用变化检测数据集(change detection dataset)中不同场景的视频序列来对不同算法进行对比实验。从实验结果可知,属于第3类方法的DECOLOR 的检测效果优于其他算法,在均值对比中得到的召回率、精确率和F-measure分别为0.7、0.706和0.66。总体来说,当前改进算法都能有效地弥补最初鲁棒主成分分析方法的缺陷,提高了运动目标检测的精度。结论 鲁棒主成分分析在运动目标检测上取得了较多的研究与应用成果,在智能视频监控应用领域拥有广阔的应用前景。但是,其仍需针对鲁棒主成分分析存在的一些局限性进行深入的研究。融入前景运动目标在视频中的先验知识是基于鲁棒主成分分析的运动目标检测的发展趋势。 相似文献
7.
研究了改善主成分分析(PCA)算法鲁棒性的一种实现途径.通过对误差函数的建模分析,得到一种改进的目标函数.提出一种新的在线自适应式的鲁棒PCA运算规则.该方法基于单层线性神经网络(NN)结构,但是权值的训练算法是非线性的.从而在迭代训练中对"劣点"样本加以适当处理来排除对运算精度和收敛性的影响. 相似文献
8.
针对眼科医生诊断眼底图像工作耗时且易出错的问题,提出一种无监督的眼底图像硬性渗出物检测方法。首先,通过形态学的背景估计方法去除血管、暗病变区域和视盘;然后,以图像亮度通道为初始图像,利用硬性渗出物在眼底图像中的局部性和稀疏性,结合局部熵和鲁棒主成分分析方法分解得到低秩矩阵和稀疏矩阵;最后,归一化稀疏矩阵得到硬性渗出物区域。实验结果显示,在e-ophtha EX和DIARETDB1公开数据库上,所提方法在病灶水平上灵敏性为91.13%和特异性为90%,在图像水平上准确率为99.03%,平均运行时间0.5 s;与支持向量机(SVM)和K-means方法相比灵敏性高且耗时少。 相似文献
9.
针对鲁棒主成分分析(RPCA)模型未能有效地利用运动目标时空连续性先验,容易将背景中的动态细节误判为运动目标的问题,提出了基于分层RPCA的运动目标检测方法.第一层RPCA模型对下采样的低分辨视频进行快速分解,动态地估计可能的运动区域,并利用时空域3D全变差模型来去除稀疏成分中的非结构化的背景扰动,确定显著的运动目标区域,生成运动区域map;第二层构建加权的RPCA模型,根据估计的运动区域map对候选前景进行阈值加权,鲁棒地检测运动目标,得到清晰完整的前景.实验结果证明,该方法能够有效地处理复杂动态背景的运动目标检测. 相似文献
10.
主成分分析(Principal component analysis, PCA) 是处理高维数据的重要方法. 近年来, 基于各种范数的PCA模型得到广泛研究, 用以提高PCA对噪声的鲁棒性. 但是这些算法一方面没有考虑重建误差和投影数据描述方差之间的关系; 另一方面也缺少确定样本点可靠性(不确定性)的度量机制. 针对这些问题, 本文提出一种新的鲁棒PCA模型. 首先采用$L_{2, p}$模来度量重建误差和投影数据的描述方差. 基于重建误差和描述方差之间的关系建立自适应概率误差极小化模型, 据此计算主成分对于数据描述的不确定性, 进而提出了鲁棒自适应概率加权PCA模型(RPCA-PW). 此外, 本文还设计了对应的求解优化方案. 对人工数据集、UCI数据集和人脸数据库的实验结果表明, RPCA-PW在整体上优于其他PCA算法. 相似文献
11.
为了对存在异常值的图像构建低维线性子空间的描述,提出用鲁棒主元分析(RPCA)的新方法进行掌纹识别。运用图像下抽样方法降低掌纹空间的维数,在低维图像上应用RPCA提取低维的投影向量,然后将训练图像和待识别图像向投影向量上投影得到鲁棒主元特征,计算特征向量间的余弦距离进行掌纹匹配。运用PolyU掌纹图像库进行测试,结果表明,与主元分析(PCA)、独立元分析(ICA)和核主元分析(KPCA)相比,RPCA算法的识别率最高为99%,特征提取和匹配总时间0.032 s,满足了实时系统的要求。 相似文献
12.
针对现有的鲁棒主成分分析(RPCA)方法忽略序列数据的连续性及不完整性的情况,提出了一种低秩矩阵恢复模型——正则化不完全鲁棒主成分分析(RIRPCA)。首先基于序列数据连续性的度量函数建立了RIRPCA模型,即最小化矩阵核范数、L1范数和正则项的加权组合;然后使用增广拉格朗日乘子法来求解所提出的凸优化模型, 此算法具有良好的可扩展性和较低的计算复杂度;最后,将RIRPCA应用到视频背景建模中。实验结果表明,RIRPCA比矩阵补全和不完全RPCA等方法在恢复丢失元素和分离前景上具有优越性。 相似文献
13.
基于主成分分析(PCA)的盲攻击策略仅对具有高斯噪声的测量数据有效,在存在异常值的情况下,上述攻击策略将被传统的坏数据检测模块检测。针对异常值存在的问题,提出一种基于鲁棒主成分分析(RPCA)的盲攻击策略。首先,攻击者收集含有异常值的测量数据;然后,通过基于交替方向法(ADM)的稀疏优化技术从含有异常值的测量数据中分离出异常值和真实的测量数据;其次,对真实测量数据进行PCA,得到系统的相关信息;最后,利用获得的系统信息构造攻击向量,并根据得到的攻击向量注入虚假数据。该攻击策略在IEEE 14-bus系统上进行了测试,实验结果表明,在异常值存在的情况下,传统的基于PCA的攻击方法将被坏数据检测模块检测,而所提方法基于鲁棒PCA的攻击策略能够躲避坏数据检测模块的检测。该策略使得在异常值存在的情况下虚假数据注入攻击(FDIA)仍然能够成功实施。 相似文献
14.
针对稀疏矩阵奇异值分解(SRSVD)方法和半精确增广拉格朗日(SEALM)算法在采样比例小且稀疏噪声大,以及存在高斯噪声时不能准确拟合无线传感器网络(WSN)节点轨迹的问题,提出一种正则化的加权不完全鲁棒主成分分析(RWIRPCA)方法。首先,将不完全鲁棒主成分分析(IRPCA)应用于节点轨迹拟合;然后,在IRPCA的基础上,为了更好地刻画矩阵的低秩性和稀疏性,以及增强模型的抗高斯噪声性能,分别对低秩矩阵和稀疏矩阵进行加权;最后,将高斯噪声矩阵的F范数作为正则项,应用于节点轨迹拟合。仿真结果表明,IRPCA和RWIRPCA在采样比例小且稀疏噪声大时拟合效果均优于SRSVD和SEALM方法,特别是所提的RWIRPCA在稀疏噪声和高斯噪声同时存在时,仍能取得准确且稳定的拟合效果。 相似文献
15.
提出一种多特征稳健主成分分析(MFRPCA)算法,该算法融合多种视觉特征进行视频运动目标分割,分割的目的即将运动目标从静止信息中提取出来,分割的主要过程是将多特征视频矩阵分解为低秩矩阵和稀疏矩阵.矩阵分解过程是求解一个带受限条件的核范数与L2,1范数组合的最小化问题,此最小化问题可以通过增广拉格朗日乘子法(ALM)有效求解.与其他算法相比,本文算法融合了图像的颜色、边缘和纹理特征等多个特征,通过对变化检测基准数据集进行检测,本文算法获得的查全率为0.486 0和F度量为0.559 7,实验结果表明,本文算法的稳健性和可靠性均优于其他算法. 相似文献
16.
传统的多向主元分析(MPCA)已广泛应用于监视多变量间歇过程。在MPCA算法中,三维的间歇过程数据需要转换为高维的二维向量,导致计算量和存储空间大,同时不可避免地丢失一些重要信息。因此,提出一种新的基于二维主元分析(2DPCA)的故障诊断方法。由于每个批次的间歇过程数据是一个二维向量(矩阵),应用以各个批次矩阵为分析对象的2DPCA算法,避免矢量化,存储空间和存储需求小;另外,2DPCA采用各个批次的协方差的平均值来进行建模,能够更加准确地反映出不同类型的故障,在一定程度上增强了故障诊断的准确性。半导体工业实例的监视结果说明,2DPCA方法优于MPCA。 相似文献
17.
基于核主成分分析的步态识别方法 总被引:2,自引:0,他引:2
为了从多帧步态序列中更有效地提取步态特征并实时性地进行身份识别,提出一种有效的基于平均步态能量图(MGEI)的核主成分分析(KPCA)的身份识别方法。通过预处理技术提取出运动人体的侧面轮廓,根据步态下肢的摆动距离统计出步态周期,得到MGEI。KPCA采用非线性方法提取主成分,描述待识别图像中多个像素之间的相关性。利用KPCA的方法在高维空间对MGEI提取特征,选择合适的核函数,用方差倒数加权欧氏距离进行身份识别。实验结果表明,该算法具有较好的识别性能,并且耗时大大缩短。 相似文献