首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application field of shield tunneling has extended in recent years. Most shield-driven tunnels are supported by segmental concrete linings. Although many well documented experimental, numerical and analytical results exist in literature concerning the functioning of segmental tunnel linings, their behavior under the influence of joints is still not clear.This paper presents a numerical study that has been performed to investigate the factors that affect segmental tunnel lining behavior. Analyses have been carried out using a two-dimensional finite difference element model. The longitudinal joint between segments in a ring has been simulated through double node connections, with six degrees of freedom, represented by six springs. The proposed model allows the effect of not only the rotational stiffness but also the radial stiffness and the axial stiffness of the longitudinal joints to be taken into consideration. The numerical results show a significant reduction in the bending moment induced in the tunnel lining as the joint number increases. The tunnel behavior in terms of the bending moment considering the effect of joint distribution, when the lateral earth pressure factor K0 is equal to 0.5, 1.5 and 2, is almost similar and differs when K0 is equal to unity. It has been seen that the influence of joint rotational stiffness, the reduction in joint rotation stiffness under the negative bending moment, the lateral earth pressure factor and Young’s modulus of ground surrounding the tunnel should not be neglected. On the other hand, the results have also shown an insignificant influence of the axial and radial stiffness of the joints on segmental tunnel lining behavior.  相似文献   

2.
根据武汉长江隧道工程管片接头所具有的复杂接缝结构特点,采用三维非线性有限元方法,对管片混凝土和接头承压衬垫均采用非线性材料性质,对螺栓采用三维实体结构模拟并考虑了螺栓预紧力的作用,对榫头采用三维实体模拟并考虑了接触关系,完成了对管片接头力学特征的分析研究。分析表明,接头弯曲刚度随接头弯矩增大而明显减小,但当弯矩增至一定程度后,接头切线弯曲刚度反有轻微增大;随接头弯矩的增长,端面混凝土最大压应力也相应增大,但当接头弯矩增到一定程度后,接头端面混凝土最大压应力数值趋于稳定不变;随接头正弯矩增大,弯螺栓拉应力将有明显提高,而随接头负弯矩增大,弯螺栓拉应力将会有所衰减。研究结论可供类似盾构隧道工程参考。  相似文献   

3.
Group studs are known as shear connectors in steel and concrete composite structures. By now, many composite bridges have been characterized by long lateral cantilevers. The shear studs are actually under biaxial action consisting of shear force and action in light of lateral bending moment on concrete slab induced by long cantilever and passing by moving loads. Moreover, lateral bending moment may even lead to the initiation of bending-induced concrete cracks. These two situations can both affect mechanical performance of group studs. Thus, a parametrical FEM analysis was carried out, in which damage plasticity was introduced to simulate material nonlinear behavior. In the analysis, lateral bending moments respectively inducing maximum concrete crack widths of 0.1 mm and 0.2 mm, shank diameters of 13 mm, 16 mm, 19 mm and 22 mm and stud heights including 80 mm and 100 mm were parameters. It was found that mechanical behavior of group studs with large shank diameter would be less affected by biaxial action and initial bending-induced concrete cracks seemed unfavorable to stud shear stiffness. On the other hand, typical push-out tests were executed to investigate reductions of shear stiffness and shear capacity of group studs. The reliability of FEM analysis was also verified based on the tests. In addition, stud shear capacity evaluations according to several design specifications were presented. It indicated shear capacity evaluation of Eurocode 4 got a relatively large safety factor. Moreover, the applicability of these specifications for group studs on shear capacity evaluation was also discussed.  相似文献   

4.
Construction of tunnels in urban cities may induce excessive settlement and tilting of nearby existing pile foundations. Various studies reported in the literature have investigated the tunnel–soil–pile interaction by means of field monitoring, centrifuge and numerical modelling. However, the load transfer mechanism between piles in a group, the induced settlement and the tilting of a pile group due to tunnel advancement has not been investigated systematically and is not well understood. This study conducts three-dimensional, coupled-consolidation finite element analyses to investigate tunnelling effects on an existing 2 × 2 pile group. The construction of a 6 m diameter (D) tunnel in saturated stiff clay is simulated. Responses of the pile group located at a clear distance of 2.1 m (0.35D) from a tunnel constructed at three different cover-to-diameter-of-tunnel ratios (C/D) of 1.5, 2.5 and 3.5 are investigated. The computed results are compared to published data based on field monitoring. It is found that the most critical stage for settlement, tilting and induced bending moment of pile group due to tunnelling is when the tunnel face is close to the pile group rather than at the end of tunnel excavation. The depth of the tunnel relative to the pile group has a vital influence on the settlement, tilting of pile group and the load transfer mechanism between piles in pile group induced by tunnel excavation. Tunnelling near the mid-depth of the pile group (i.e. C/D = 1.5) induces the largest bending moment in the piles, but the settlement and tilting of the pile group are relatively small. Based on a settlement criterion, apparent loss of capacity of the pile group is 14% and 23% for tunnels constructed at depths of C/D = 1.5 and at both C/D = 2.5 and 3.5, respectively. The largest load redistribution between the front and rear piles in the group and the largest tilting of the pile cap towards the tunnel occurs when tunnel excavated at C/D = 2.5.  相似文献   

5.
Historically, attempts to use tunnel boring machines (TBMs) in Himalayan geology have been unsuccessful, particularly where weak rocks exist at the significant depths often required for hydroelectric hydraulic tunnels resulting in squeezing ground conditions. The use of segmental tunnel linings erected by shielded TBMs presents additional risk, such that the advantages of potentially high rates of advance using this form of construction have not previously been realised. Programme demands for the 330 MW Kishanganga Hydroelectric Project in India required that 15 km of the 23 km headrace tunnel be constructed using a double-shield TBM erecting a segmental lining. Preliminary studies suggested difficult ground due to squeezing conditions along the 1400 m deep tunnel through weak meta-sedimentary rocks. To allow planning and construction to commence, a risk management approach to design and construction was formulated with contingency procedures and criteria developed to allow the risks to the TBM and the lining to be managed effectively. Advanced numerical modelling included analysis of the tunnel with the ground represented by a Stress Hardening Elastic Viscous Plastic (SHELVIP) model to take account of time dependent loading. The Kishanganga tunnel represents the first segmentally lined TBM tunnel to be successfully constructed in the Himalaya. This paper describes the risk-mitigation approach, the special measures developed to address the risks, the numerical modelling and laboratory testing undertaken, and includes results from the segmental lining monitoring. Recognition of the risks, the development of an innovative methodology and the provision of the means by which geotechnical risk could be managed effectively during construction, gave confidence to all stakeholders to proceed with a method of construction that had not previously been implemented successfully in the Himalaya.  相似文献   

6.
The Zhegu mountain tunnel is a typical long, deep-buried highway tunnel at a high altitude, subjected to low temperatures and high geostress. The tunnel is excavated in carbon phyllite and slate at depths of up to 1000 m below ground, which has resulted in extreme deformation, especially in a depth of 3 m from the tunnel perimeter. The maximum deformation was monitored to be 60 cm, with a maximum deformation speed of 39.3 mm/day. In addition, it took 60–120 days to complete 90% of the deformation. The deformation of the Zhegu mountain tunnel is characterized by serious subsidence of the arch, squeezing outwards of sidewalls, buckling failure of sidewalls and local collapse. The swelling of soft rock is found not to be a main factor of large deformation in the subject tunnel. Three mechanisms of large deformation are derived based on the characteristics and geological conditions, which are plastic flow of soft rock, shear sliding of wedges, and bending of thin-layered soft rock.  相似文献   

7.
A series of fire tests was conducted in a 10.0 m (L) × 0.75 m (W) × 0.45 m (H) model tunnel with a rectangular cross section, and detailed measurements were taken of the temperature and velocity within a quasi-steady state fire-driven ceiling-jet running along the centre of a ceiling.The ceiling-jet thickness was defined as the distance from the tunnel ceiling to the point where the temperature and/or velocity dropped to half of their maximums. Correlations to represent the variation in the ceiling-jet thickness along the tunnel axis were developed with the aid of a theoretical approach. The coefficients included in these correlations were determined based on the experimental results obtained. It was found that the ceiling-jet thickness derived from the temperature was 1.17 times greater than that from the velocity in the tranquil flow region.In the tranquil region, both the velocity and temperature showed top-hat distributions, with a bulging shape from the apex of the distribution towards the tunnel floor. A cubic function and coordinate transformation were applied to develop empirical formulae for the temperature and velocity distributions, which were represented by the dimensionless distance from the tunnel ceiling and dimensionless temperature rise and/or velocity at a given distance from the fire source. The correlation developed for the temperature distribution was compared with the results of large- and full-scale tunnel experiments, which verified its applicability.  相似文献   

8.
接头是沉管隧道受力最薄弱的环节。依托实际工程建立了沉管隧道节段接头三维数值模型,研究了沉管隧道半刚性管节节段接头抗弯及抗剪力学性能,得到了接头受力与变形规律及接头抗弯、抗剪刚度变化规律。研究结果表明:(1)在压弯工况下,节段接头张开量与接头弯矩关系呈现三阶段变化规律,当接头张开量小于0.1 mm时,其抗弯刚度约占本体刚度的49%~87%,当接头张开量大于1 mm时,其抗弯刚度不足本体刚度的10%,初始预应力损失导致接头抗弯性能降低;(2)压剪工况下的接头抗剪性能主要由节段之间端面混凝土摩擦力提供,设置剪力键传力垫层可充分发挥节段接头端面混凝土摩擦抗剪力,提高接头整体抗剪性能;(3)在压弯工况下传力垫层不影响接头转动,而弯剪受力模式降低了传力垫层总受压荷载。  相似文献   

9.
A series of fire tests was conducted in a small-scale tunnel with dimensions of 10.0 m (L) × 0.75 m (W) × 0.45 m (H) and a rectangular cross-section. Detailed measurements of the velocity and temperature within a steady fire-driven ceiling-jet running along the centre of the ceiling were conducted.Referring to a theoretical derivation process described in the literature as a starting point, correlations representing the velocity and temperature attenuation along the tunnel axis were developed.The values of the coefficients included in the developed correlation for the velocity attenuation were measured using a particle image velocimetry system during the experiments conducted in the small-scale tunnel. The value of the Stanton number was determined by considering the ceiling-jet thickness, which was derived from the velocity distribution. The values of the coefficients included in the developed correlation for the temperature attenuation were also determined based on experimental results described in the literature, which were obtained in a large-scale tunnel constructed using good heat insulation properties.Through these correlations developed for the velocity and temperature attenuations along the tunnel axis, the variation in the Richardson number of the ceiling-jet based on the distance from the fire source position along the tunnel axis was examined, and the position where the ceiling-jet changed from a shooting flow to a tranquil flow was determined. The boundary positions between the shooting and tranquil flows were determined using correlations between the velocity and/or temperature attenuation, which were compared with the variation in the Richardson number along the tunnel axis to verify their appropriateness.  相似文献   

10.
Glass fibre-reinforced polymer (GFRP) tubes are compared to steel spiral reinforcement in circular concrete members with longitudinal reinforcement and prestressing, using six beam tests. Two 324 mm diameter and 4.2 m long prestressed specimens were tested in bending. Four 219 mm diameter reinforced specimens were also tested, including two 2.43 m long beams tested in bending and two 0.6 m long beams tested in shear. In each set, one specimen was essentially a concrete-filled GFRP tube, while the other control specimen included steel spiral reinforcement of comparable hoop stiffness to that of GFRP tube. The strength of control specimens was governed by crushing and spalling of concrete cover. Unlike spiral reinforcement, GFRP tubes confined larger concrete areas and also contributed as longitudinal reinforcement, leading to increases in flexural and shear strengths, up to 113% and 69%, respectively.  相似文献   

11.
Fire detection experiments in a road traffic tunnel were performed in the Runehamar test tunnel 5th–8th March 2007. The Runehamar test tunnel is a full profile road traffic tunnel, 1.65 km long, located outside Åndalsnes, Norway. The goal was to examinate smoke and heat detection systems to determinate what kind of principle best suited for detecting a fire in an early stage. The systems were tested during small Heptane pool fires, varying between 0.16 m2 and 1 m2, giving heat release rates from 0.2 MW to 2.4 MW accordingly, and one car fire of about 3–5 MW, and with wind conditions varying from 1.1 m s?1 to 1.6 m s?1. The size of the fires, were designed to be in the range from impossible to difficult to detect. The results were conclusive. Earliest detection of a car fire, fire starts inside, was by smoke detection given fixed limits (3000 μg m?3). With open pool fires, or immediate flames, continues fibre optical heat detection systems was faster given the limits 3 °C/4 min.  相似文献   

12.
Prediction of the maximum surface settlement due to shallow tunnelling in soft grounds is a valuable metrics in ensuring safe operations, particularly in urban areas. Although numerous researches have been devoted to this issue, due to the complexity and a large number of the effective parameters, no comprehensive solution to the problem is available. In this study, a shallow tunnel classification system (STCS), based on maximum settlement, is proposed. The STCS holds on the results of several tunnelling projects around the world. The classifier categorises a tunnel based on geometry, ground, and performance characteristics. A decision tree classification method, after training with 20 cases, was successful to predict the maximum settlement for 14 tunnelling projects. The maximum surface settlement predictions were in the form of assigning a class label to each tunnel. Four tunnel classes were defined as follow: (i) class A (maximum settlement < 9.9 mm), (ii) class “B” (10  maximum settlement < 19.9 mm), (iii) class “C” (20  maximum settlement < 29.9 mm), and (iv) class “D” (maximum settlement  30 mm). The most explanatory independent variables were selected, by the STCS, as follow: tunnel depth, diameter, volume loss, and normalised volume loss. The proposed classification scheme can be employed as a decision making aid in settlement prediction/prevention in shallow tunnelling in soft grounds. The STCS is proposed as a supplemental tool to the observational methods, and it is not expected to be a stand-alone measure for settlement.  相似文献   

13.
While the features of frost susceptible soils have been examined in various studies, the mechanisms by which volume changes due to ground freezing can influence cast iron water pipes buried below the frost line have not been explained, and the hypothesis that frost-induced ground deformations can induce ring fractures due to longitudinal bending of these pipes has not been proven. Therefore, a parametric study employing three dimensional finite element analysis is reported, where the soil–pipe interaction associated with a pipe crossing under an intersection of a major arterial road with a residential street are examined. The arterial road is modeled as having non-frost susceptible sub-base and the local street is represented as having a lower grade pavement with frost susceptible sub-base. One specific frost loading case featuring both isotropic pore water expansion and orthotropic ice lens formation is modeled.The analysis demonstrates how volume changes due to ground freezing in soil strata above the buried pipe can induce bending moments sufficient to cause ring fracture. Changes in the relative axial stiffness of the pipe were found to have only a small effect on pipe moments. Decreases in the relative flexural stiffness of the pipe resulting from reductions in pipe modulus also had only a small effect on pipe deflections and normalized moments. Changes due to soil modulus had a significant effect on deformations, but little influence on moments. Decreases in pavement stiffness decrease pipe deflections and moments. Trench backfill conditions greatly affect deflection and moment. Reduction in burial depth from 2 m to 1.5 m increases deflections, and increases moments beyond the failure capacity of the grey, cast iron pipe considered in the study, and this computational result is directly supported by field evidence.  相似文献   

14.
Sealing of tunnels in fractured rocks is commonly performed by pre- or post-excavation grouting. The grouting boreholes are frequently drilled close to the tunnel wall, an area where rock stresses can be low and fractures can more easily open up during grout pressurization. In this paper we suggest that data from hydraulic testing and grouting can be used to identify grout-induced fracture opening, to estimate fracture stiffness of such fractures, and to evaluate its impact on the grout performance. A conceptual model and a method are presented for estimating fracture stiffness. The method is demonstrated using grouting data from four pre-excavation grouting boreholes at a shallow tunnel (50 m) in Nygård, Sweden, and two post-excavation grouting boreholes at a deep tunnel (450 m) in Äspö HRL, Sweden. The estimated stiffness of intersecting fractures for the boreholes at the shallow Nygård tunnel are low (2–5 GPa/m) and in agreement with literature data from field experiments at other fractured rock sites. Higher stiffness was obtained for the deeper tunnel boreholes at Äspö which is reasonable considering that generally higher rock stresses are expected at greater depths. Our method of identifying and evaluating the properties and impact of deforming fractures might be most applicable when grouting takes place in boreholes adjacent to the tunnel wall, where local stresses might be low and where deforming (opening) fractures may take most of the grout.  相似文献   

15.
A set of experiments was carried out in a 1/9 reduced-scale single-track railway tunnel to investigate the effect of fuel area size on the temperature distribution and behavior of fires in a tunnel with natural ventilation. Methanol pool fires with four different fuel areas 0.6 × 0.3 m2 (1 pan), 1.2 × 0.3 m2 (2 pans), 2.4 × 0.3 m2 (4 pans) and 3.6 × 0.3 m2 (6 pans), were used in these experiments. Data were collected on temperatures, radiative heat flux and mass loss rates. The temperature distribution and smoke layer in the tunnel, along with overflow dimensions and radiant heat at the tunnel entrance were analyzed. The results show that as the fuel area enlarges, the fire gradually becomes ventilation-controlled and the ceiling temperature over the center of fire source declines. Burning at the central region of fire source is depressed due to lack of oxygen. This makes the temperature distribution along the tunnel ceiling change from a typical inverted V-shape to an M-shape. As observed in the experiments, a jet flame appeared at tunnel entrances and both the size and temperature of the flame increased with the enlargement of fuel area leading to a great threat to firefighters and evacuees in actual tunnel fires.  相似文献   

16.
《Energy and Buildings》2006,38(3):207-213
Air ducts and related equipments are used in a large number of buildings having thermal comfort. In this study, energy loss related with air leakage is studied. The leakage measurement setup was produced according to NEN-EN standards and the evaluation of data have been conducted by using power law model. The measurements were made on 300 and 1000 mm diameter single circular ducts, 300 mm × 250 mm and 1000 mm × 500 mm flanged joint rectangular ducts, 300 and 630 mm diameter circular beaded slip joint ducts, 300 mm × 200 mm and 500 mm × 300 mm rectangular flanged and drive slip joint ducts, and an branched air distribution system having different diameters for positive internal pressures. Test results have showed that the most of air leakage is from the joints. The seam contribution to air leakage is relatively lower than the joints. Using sealing gaskets help to improve the air leakage by about 50%.  相似文献   

17.
The design of a forty-meter long model used to estimate the seismic response of the immersed tunnel of the Hong Kong-Zhuhai-Macau (HZM) bridge engineering is presented. The model was composed of twelve model boxes, four “active” as they were placed on top of four shaking tables, each with a dimension of 4 × 6 m with capacity of 1.5 g. The remaining eight model boxes were “inactive”, as their response was the result of the motions imposed by the active model boxes through the connection between boxes. The design of the connections was deemed critical to accomplish a consistent excitation through the system. Analytical and numerical simulations of the test system were carried out where the model boxes were represented as beams and their connections as rotational springs. In the model, wave passage along the axis of the tunnel was input to the “active” model boxes using a delay equal to the time it would take the seismic wave to travel from one active box to the next along the axis of the tunnel. A series of tests conducted with the boxes verified the design. The in-situ soil, found at the location of the tunnel, was modeled using a synthetic soil formed by an intimate mixture of sawdust and sand with mass proportions 1:2.5, that yielded dynamic properties that, after the similitude ratios used for the design of the system, were analogous to those of the natural soil. The effects of the rigid boundaries imposed by the lateral walls of the model box were investigated by carrying out tests on a single model box, filled with the synthetic soil that reproduced the natural slope of the ground at the location of the tunnel. Readings from accelerometers placed inside the soil during the shaking table tests showed that the effects of the boundaries were negligible. These results were confirmed by two-dimensional plane-strain simulations using a finite element method that replicated the experiments. In summary, analytical, numerical and experiment results consistently showed that the design of the model boxes and the synthetic soil were adequate. The design and tests of the long tunnel model will be presented elsewhere.  相似文献   

18.
A water system, consisting of several water mist nozzles, has been installed in a reduced-scale tunnel. Its effectiveness in blocking fire-induced smoke and heat is tested, with and without longitudinal ventilation. A total of 14 fire tests have been carried out, with 250 ml methanol in an iron tray (25 cm × 20 cm) as fuel. Temperatures have been measured by 30 thermocouples, located upstream and downstream of the fire location. The aim is to assess the effectiveness of the water system in preventing smoke spread and in reducing the temperature in the tunnel. Interaction of the water with the fire is avoided. The impact of water pressure, ventilation velocity and nozzle arrangement on the effectiveness in smoke blocking and temperature reduction is discussed. The result confirms that the water system effectively reduces the temperatures and prevents smoke spreading in the absence of longitudinal ventilation. However, strong longitudinal ventilation (0.8 m/s ventilation velocity in the reduced-scale tunnel, corresponding to critical velocity in full-scale (1:10) tunnel) reduces the effectiveness in blocking the smoke spreading by the water system, although the temperature reduction downstream the water system remains in place. Higher water pressure makes the cooling effect stronger, because more and smaller water droplets are injected into the tunnel. For a given level of water pressure level, the impact of the nozzle row configuration is small in the tests.  相似文献   

19.
This paper presents findings obtained by CFD modelling for simulating the effects of fire due to different vehicle types in a bi-directional road tunnel. Four different burning vehicles placed in the centre of the driving lane at tunnel middle length were considered. Peaks of the heat release rate (HRR) of: 8, 30, 50, and 100 MW were simulated for the two cars, the bus, the heavy goods vehicle (HGV), and the petrol tanker, respectively. The fire effects on tunnel structure and on environmental conditions along people evacuation path were especially evaluated. The effects of the traffic jam, in contrast with the isolated vehicles, on temperatures, radiant heat flux, visibility distance, and toxic gases concentrations, were also investigated. The worst scenario was identified to be that pertaining to the petrol tanker and more critical conditions were also found when the tunnel was full of vehicles. The maximum gas temperatures reached in the presence of traffic at the side wall (and at the tunnel ceiling reported in brackets) were found to be: 360 °C (170 °C) for the two cars; 740 °C (465 °C) for the bus; 835 °C (735 °C) for the HGV and 1305 °C (1145 °C) for the petrol tanker, respectively. The presence of the traffic, in contrast with the isolated vehicle, involved an increase in the maximum temperatures equal to 16–17% for the two cars, and contained in the range 12–29% with percentages increasing starting from the tanker, to the HGV and to the bus. In other words when the maximum temperatures produced by the isolated vehicle are very high (e.g. for the tanker), the presence of the traffic had a minor effect. With reference to environmental conditions along the evacuation path, the results showed that in the case of petrol tanker fire the emergency ventilation ensures a tenable level of temperature, radiant heat flux, and toxic gases concentrations up to 5 min from the fire starting. This time increases up to 6.5 min for the HGV and 8 min for the bus. This means that the tunnel users in order to be safe in all scenarios should leave the tunnel within 5 min after the fire starting. Toxic gases concentrations, however, were found to be below the limit values in all cases and also in the presence of traffic. In the light of the aforementioned results, tunnel occupants should be promptly informed of the fire risk and guided to the exit portals. This might be done by equipping the tunnel with illuminated emergency signs located along the tunnel length and by installing traffic lights before the entrances so that the tunnel can be closed in case of emergency. By activating the traffic lights at the portals and the emergency signs (more especially those at the ceiling) at the same time as the emergency ventilation is activated, safer conditions for the people evacuation are expected.  相似文献   

20.
Isolation layer is one of the countermeasures to enhance seismic safety of tunnels. Its behavior under earthquake is affected by many factors such as shape of the tunnel, stiffness of the isolation layer and the characteristics of the input motion. However, current knowledge on the effects of these parameters on the seismic behavior of isolation layer is limited to lack of experimental data. This paper focuses on the mechanism of isolation layer, especially the efficacy of input motion frequencies on the seismic behavior of a square tunnel with isolation layer around its outer surface. Dynamic centrifuge tests were carried out on model tunnels which took isolation layer as seismic countermeasure using input motion of sinusoidal waves of different frequencies. Actual records of ground motions, magnified to approximate 15 g peak acceleration, formed the basis of the excitations to verify the actual efficacy. Due to the difference between model material (aluminum alloy) and prototype material (concrete), the similar flexural deformation law and the similar axial deformation law could not be satisfied simultaneously. Given the fact that cross-sectional moments were one of the main factors that influenced the safety of tunnels under dynamic loadings, the similar flexural deformation law was accepted in model preparation. The results show that the bending strains of tunnel with isolation layer around its outer surface are lower than those of tunnel without isolation layer, which indicates that isolation layer has positive effect on moment reduction, especially at corners. Increasing of the input motion frequency decreases the dynamic cross-sectional bending moments. In addition, isolation layer has little influence on frequency contents of acceleration response of tunnel. This study has clarified the mechanism of isolation layer on shock absorption, which is proved to be an effective method to improve the safety of tunnel against earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号