首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Promising alternatives to conventional dry and fluid coolant applications are minimum quantity lubricant (MQL) or near dry grinding. Despite several researches, there have been a few investigations about the influence of MQL parameters on the process results, such as oil flow rate, air pressure, MQL nozzle position and distance from the wheel–workpiece contact zone. The current study aims to show through experiment and modeling, the effects of the above parameters on grinding performance such as grinding forces and surface roughness. The results show that the setting location of the nozzle is an important factor regarding the effective application of MQL oil mist. It has been shown that optimal grinding results can be obtained when the MQL nozzle is positioned angularly toward the wheel (at approximately 10–20° to the workpiece surface). In addition, it is found that the efficient transportation of oil droplets to the contact zone requires higher mass flow rate of the oil mist towards the grains flat area and longer deposition distance of an oil droplet. Applying the new setup, considerable reduction in the grinding forces and surface roughness has been achieved.  相似文献   

2.
An energy-efficient process route for manufacturing machine tools and dies of high quality was proposed based on recrystallization and partial melting (RAP) method and semi-solid forming technology. To verify its feasibility, the effects of parameters such as predeformation, heating rate, and holding time on the microstructure and mechanical properties of cast Cr–V–Mo steel were studied experimentally. Recrystallization, austenization, grain growth and partial melting occur during heating of predeformed cast billet. These behaviors refine the microstructure and improve the mechanical properties. The refinement of microstructure and improvement of mechanical properties become more significant, when RAP is conducted with larger predeformation (50%), higher heating rate (50 °C/s) and shorter isothermal holding time (20 s).  相似文献   

3.
This study is carried out to investigate the material removal characteristics in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire using single diamond abrasive grain. The scratching experiments are performed to develop a fundamental understanding of the ductile–brittle transition mechanism during EUAG of monocrystal sapphire. An elliptical ultrasonic vibrator attached with a sapphire substrate was set up on a multi-axis CNC controlled machining center equipped with a single point diamond tool. The vibrator was constructed by bonding a piezoelectric ceramic device (PZT) having two separated electrodes on a metal elastic body, and an elliptical ultrasonic vibration was generated on the end-face of the metal elastic body when two phases of alternating current (AC) voltages with a phase difference are applied to their respective electrodes on PZT. In scratching experiments, the effects of ultrasonic vibration on the critical depth of cut ac for the ductile–brittle transition region and the material removal ratio, i.e., the ratio of the removed material volume to the machined groove volume, fab, are investigated by the examination of the scratching groove surfaces with SEM and AFM. The obtained results show that the critical depth of cut in EUAG is much larger than that in conventional grinding without vibration (CG), and even the bigger vibration amplitude leads to a greater improvement. Although the values of fab in the ductile–brittle transition region in both EUAG and CG are less than 1, that in EUAG is bigger than that in CG. Furthermore, as the vibration amplitude increases, the value of fab is increased to eventually be close to 1. These show that it is prone to achieve a ductile mode grinding in greater vibration amplitude. It was also found that in the process there are two kinds of material removal modes, i.e., continuous cutting and discontinuous cutting modes, which are determined by the relationship between values of vibration amplitude and depth of cut. This study validates that the elliptical ultrasonic assisted grinding method is highly effective in ductile mode machining of hard and brittle materials.  相似文献   

4.
The deep hole drilling and tapping of automotive powertrain components made of hypoeutectic Al–Si alloys are of considerable importance. This work investigates the dry and minimum quantity lubricated (MQL) tapping of Al–6.5%Si (319 Al) alloys as alternatives to conventional flooded tapping. Two types of tests were done in comparison with flooded tapping. In the first set dry tapping experiments were performed using diamond-like carbon (DLC) coated and uncoated HSS taps. HSS-dry tapping caused immediate tool failure within less than 20 holes due to aluminum adhesion, resulting in high forward and backward torques. DLC-dry tapping improved tool life considerably and exhibited small torques. The second set of tapping experiments used MQL and only uncoated HSS taps. The use of MQL at the rate of 80 ml/h produced similar average torques to flooded tapping, and a high thread quality was observed. DLC coatings’ low COFs against 319 Al limited the temperature increase during DLC-dry tapping to 75 °C. The low COF of DLC against aluminum was responsible for preventing built-up edge (BUE) formation and thus, instrumental in improving thread quality. The use of MQL reduced the tapping temperature to 55 °C. The mechanical properties of the material adjacent to tapped holes, evaluated using hardness measurements, revealed a notable softening in the case of HSS-dry tapping, but not for MQL tapping. The presence of sulphur and phosphorus-based additives in MQL fluids proved beneficial in preventing aluminum adhesion.  相似文献   

5.
《Acta Materialia》1999,47(6):1869-1878
The influence of prior tensile deformation on the magnetic Barkhausen emission (MBE) and the hysteresis (B–H) curve has been studied in 0.2% carbon steel and 2.25Cr–1Mo steel under different tempered conditions. This study shows that the micromagnetic parameters can be used to identify the four stages of deformation, namely (i) perfectly elastic, (ii) microplastic yielding, (iii) macroyielding and (iv) progressive plastic deformation. However, it is observed that the MBE profile shows more distinct changes at different stages of tensile deformation than the hysteresis curve. It has been established that the beginning of microplastic yielding and macroyielding can be identified from the MBE profile which is not possible from the stress–strain plot. The onset of microplastic yielding can be identified from the decrease in the MBE peak height. The macroyielding can be identified from the merging of the initially present two-peak MBE profile into a single central peak with relatively higher peak height and narrow profile width. The difference between the variation of MBE and hysteresis curve parameters with strain beyond macroyielding indicates the difference in the deformation state of the surface and bulk of the sample.  相似文献   

6.
Nanofluid, fluid suspensions of nanometer sized particles are revolutionizing the field of heat transfer area. Addition of nano-particles to the base fluid also alters the lubricating properties by reducing the friction. In grinding process, friction between the abrasive grains and the workpiece is a key issue governing the main grinding output. It has a direct influence on grinding force, power, specific energy and wheel wear. Moreover, high friction force increases the heat generation and lead to thermal damage in the surface layer of the ground work. Hence, any effort towards the friction control will enhance the component quality significantly. In this study, nanofluid as metal working fluid (MWF) is made by adding 0.05, 0.1, 0.5 and 1% volume concentration of Al2O3 and CuO nano-particles to the water during the surface grinding of Ti–6Al–4V in minimum quantity lubrication (MQL) mode. Surface integrity of ground surface, morphology of the wheel, and chip formation characteristics are studied using surface profilometer, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and stereo zoom microscopy (SZM). Coefficient of friction was estimated On-Machine using the measured forces. The results showed that the type of nanoparticle and its concentration in base fluid and the MQL flow rate play a significant role in reducing friction. Application of nanofluid leads to the reduction of tangential forces and grinding zone temperature. The cooling effect is also evident from the short C-type chip formation. MQL application with Al2O3 nanofluid helps in effective flushing of chip material from the grinding zone, thereby solving the main problem during the grinding of Ti–6Al–4V.  相似文献   

7.
In the present study, multilayered Cr–N/Cr–Al–N coatings were prepared by cathodic arc physical vapor deposition (PVD) with different numbers of layers and the same total thickness on AISI 630 steel in an attempt to improve the wear and erosion–corrosion resistance. Structural analysis of the coatings was performed by field scanning electron microscopy, X-ray diffraction (XRD), and energy-dispersive spectroscopy. Depth profiles and roughness parameters of worn surfaces were calculated after erosion and wear tests. XRD indicated that nitride compounds were formed in multilayer coatings by PVD. The Cr–N/Cr–Al–N coating exhibited superior corrosion resistance compared with AISI 630 substrate. The erosion–corrosion results revealed that the smoothest wear track with the minimum erosion rate and wear depth was obtained for five- and seven-layered coatings. The failure mechanism of the bare substrate was influenced by plastic deformation via cutting and plowing, while the failure mechanism for coated samples was chipping and delamination. According to the wear results, the multilayer coatings showed a lower friction coefficient and better surface morphology that demonstrated their high ability for wear protection.  相似文献   

8.
Loss of nitrogen is a concern when welding nitrogen strengthened stainless steel alloys. Building on the current understanding of the underlying mechanisms, a three-dimensional simulation of conduction mode laser weld pool development using the volume of fluid technique was developed. Weld pools formed by a moving Gaussian heat input for two different laser power densities were simulated and the transport and surface desorption of nitrogen was tracked using nitrogen macroparticles. The penetration depth and width of the weld pool predicted by the simulation was comparable to the data derived from macrographs of welds made on nitronic 40 alloy. Additionally, the 25–32% predicted decrease in nitrogen composition of the weld fusion zone by the new rate law is comparable to the literature.  相似文献   

9.
The phase segregation of semisolid processed products resulted in an inhomogeneous microstructure and poor mechanical properties of such products. Optimal subsequent heat treatments including quenching and tempering with various processing parameters were conducted to improve the quality of RAP (recrystallization and partial melting) processed Cr–V–Mo steel. The microstructure characteristics and mechanical properties, such as hardness, tensile strength, elongation, impact toughness, and resistance to high-temperature wear, of specimens subjected to various heat treatments were investigated. When the RAP-processed specimen was quenched from 1050 °C after isothermal holding for 480 s and then tempered twice at 560 °C for 2 h, microstructural evolution took placed in both former solid-phase and liquid-phase regions. The weakening of phase segregation, the redistribution of carbides, and the release of residual stress occurred during this heat treatment strategy caused a good combination of mechanical properties.  相似文献   

10.
11.
Abstract

The pitting corrosion of Cr18Mn12N and Cr18Ni9 steels in halide solutions (F?, Cl?, Br? and I?) has been investigated. The study involved cyclic potentiodynamic polarisation tests with subsequent examination of the specimens by both optical and scanning electron microscopy. Values of the critical concentrations of halide ions, [X?]cr, beyond which pitting occurs, as well as breakdown potentials for pitting in chloride solution, have been established. In addition, the effect of the temperature over the range of 5–80°C on the critical chloride ion concentration [Cl?]cr has been investigated and it has been found that temperature has a negligible effect beyond 40°C.  相似文献   

12.
The evolution of precipitates in an Fe–Cr–Ni–Al–Ti stainless maraging steel alloyed with Cu was investigated during aging at 525 °C. Atom probe tomography was used to reveal the development of precipitates and to determine their chemical composition. Two types of precipitates were observed to form during the aging process. Based on their chemical composition these are assumed to be NiAl B2 and Ni3(Ti,Al) (η-phase). The two phases of precipitates were found to develop independently of each other and the addition of Cu was found to accelerate precipitation. However, the effect of Cu on the nucleation of these phases is different: on the one hand, in the case of NiAl, Cu is incorporated and thus reduces the activation energy by reducing the lattice misfit; on the other hand, Cu acts as a nucleation site for the precipitation of Ni3(Ti,Al) by forming independent Cu clusters.  相似文献   

13.
Abstract

Chromium–molybdenum steels are extensively used in the steam generator circuits of power plants. These components may require welding of the cracks that can develop during fabrication, storage, and transportation stages, or during the service life of the plant. This investigation compares repair welding methods for Cr–Mo steels, using 2.25Cr–1Mo and 9Cr–1Mo materials. To simulate aging during service, welds were heat treated at 873 K for 5000 h. Simulated repair welding of the aged welds was carried out at the weld/base metal interface, i.e. at the location at which cracks are usually reported to occur during service. Two repair welding methods (half bead and butter bead temper bead methods) conforming to the ASME Boiler and Pressure Vessel Code were used. Tensile properties, hardness profiles, and X-ray diffraction based residual stress distributions were determined for both the Cr–Mo steel welds to evaluate the simulated repair welds. Analysis of the test results showed that both the repair welding methods can be used for 2.25Cr–1Mo steel welds, although the butter bead temper bead method is much more suitable for both the 2.25Cr–1Mo and 9Cr–1Mo steel welds.  相似文献   

14.
The influence of the rust layers of carbon steel and weathering steel on the corrosion were investigated. It was found that corrosion of carbon steel slows down when its outer rust layer is removed. This phenomenon might be attributed to the shortening of the wetting time in wet–dry cycles when the outer rust layers are removed. What is more, growth time of the corrosion products is shortened as well, which results in the formation of the fine corrosion products. However, the behavior of corrosion of weathering steel is not obviously influenced by the outer rust layer and the wetting time.  相似文献   

15.
This paper investigates the grinding–hardening both theoretically and experimentally with a plunge surface-grinding process. Theoretically, the paper presents a temperature-dependent finite element heat transfer model, incorporating a triangular moving heat source and various cooling conditions, to investigate the phase transformation kinetics, thus to predict the thickness of a layer hardened. The temperature variation and thickness of the hardened layer were also investigated experimentally on quenchable steel 1045 using dry air and liquid nitrogen as the cooling media. The predictions were in good agreement with the experimental results. It was found that the phase transformation follows the martensitic kinetics. The application of liquid nitrogen enhances the transformation of retained austenite to martensite and results in a refinement of the martensitic structure.  相似文献   

16.
Detailed investigation of the characteristics of stress–strain and kinematic states of metal of a welded joint in rolling the welded joint between copper and steel is discussed. The geometrical parameters of the welded joints are simulated mathematically, the fields of the characteristics in the physical plane and the plane of the hodograph of speeds in rolling the welded joints are constructed and the main relationships governing the mechanism of the formation of the stress–strain state of the metal of the rolled welded joint between copper and steel, produced by manual consumable electrode welding (flux-cored wire in a steel sheath), are determined.  相似文献   

17.
Corrosion of Ni–Cr–Mo–V high strength steel at different hydrostatic pressures is investigated by scanning electron microscopy (SEM) and finite element analysis (FEA). The results indicate that corrosion pits of Ni–Cr–Mo–V high strength steel originate from inclusions in the steel and high hydrostatic pressures accelerate pit growth rate parallel to steel and the coalescence rate of neighbouring pits, which lead to the fast formation of uniform corrosion. Corrosion of Ni–Cr–Mo–V high strength steel under high hydrostatic pressure is the interaction result between electrochemical corrosion and elastic stress.  相似文献   

18.
Degradation of stainless steel in contact with PbO–CaO–SiO2 slag at 1200 °C is experimentally investigated. The contact between steel and slag leads to the reduction of PbO from the slag to liquid Pb, and concurrent oxidation of the steel. The degradation mechanisms can be divided into liquid slag and liquid metal corrosion and oxidation. High Cr content is beneficial as it promotes the formation of a Cr2O3 scale which shields the steel from the slag and liquid Pb. The high solubility of Ni in liquid Pb is responsible for the increasing dissolution rate with increasing Ni content of the steel.  相似文献   

19.
This work investigate the wear behavior of Fe–B–Cr coatings on medium carbon steel (EN24) substrate is used for several automotive parts. The high velocity oxy-fuel (HVOF) method was used to create the new crystalline coating of Fe–B–Cr (composition of 59%Fe–26%B–15%Cr in wt %) on a medium carbon steel substrate (AISI 4340). The characteristics of powder and coating are investigated using scanning electron microscopy (SEM) merged with energy dispersive spectroscopy (EDS), optical microscopy (OM) and thermogravmentric analysis (TGA) which were undertaken in the partial characterization of the coating. The phase contents of both powder and coatings were studied by X-ray diffraction (XRD). The coatings consist of melted and un-melted particles identified in the coatings. Moreover, oxides and micro-cracks were observed at the surface. The mechanical property of the coatings was characterized using a microhardness test. The hardness value increased three times more than the substrate. The coated surface showed lower levels of porosity. Moreover, the electrochemical investigation found Fe–B–Cr coating on medium carbon steel. The corrosion test was carried out in an environment with 0.5 M of NaCl, which showed that the corrosion resistance improved by coating.  相似文献   

20.
A WC–Co–Cr coating was deposited by a high velocity oxy-fuel thermal spray (HVOF) onto a 1Cr18Ni9Ti stainless steel substrate to increase its cavitation erosion resistance. After the HVOF process, it was revealed that the amorphous phase, nanocrystalline grains (Co–Cr) and several kinds of carbides, including Co3W3C, Co6W6C, WC, Cr23C6, and Cr3C2 were present in the coating. The hardness of the coating was improved to be 11.3 GPa, about 6 times higher than that of the stainless steel substrate, 1.8 GPa. Due to the presence of those new phases in the as-sprayed coating and its higher hardness, the cavitation erosion mass loss eroded for 30 h was only 64% that of the stainless steel substrate. The microstructural analysis of the coating after the cavitation erosion tests indicated that most of the corruptions took place at the interface between the un-melted or half-melted particles and the matrix (Co–Cr), the edge of the pores in the coating, and the boundary of the twin and the grain in the stainless steel 1Cr18Ni9Ti.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号