共查询到20条相似文献,搜索用时 78 毫秒
1.
针对复杂网络结构划分过程复杂、准确性差的问题,定义了节点全局和局部相似性衡量指标,并构建节点的相似性矩阵,提出一种基于节点相似性度量的社团结构划分算法.其基本思路是将节点(或社团)按相似性合并条件划分到同一个社团中,如果合并后的节点(或社团)仍然满足相似性合并条件,则继续合并,直到所有节点都得到准确的社团划分.实验结果表明,所提算法能成功正确地划分出真实网络中的社团结构, 性能比标签传播算法(LPA)、GN(Girvan-Newman)、CNM(Clauset-Newman-Moore)等算法优秀,能有效提高结果的准确性和鲁棒性. 相似文献
2.
针对加权复杂网络中的重叠社团检测问题,提出了一种面向加权网络的基于Jaccard系数的BGLL模块密度优化算法(Modularity Density and Jaccard Based BGLL,DBGLLJ).利用节点重要度重构网络,根据模块度增益作为阶段函数和模块密度增益作为目标函数进行网络硬划分,并提出了结合改进的Jaccard系数的重叠检测方法.为验证算法,选择了3种算法在LFR网络和真实网络中进行测试,结果表明:在标准LFR网络和真实网络中,DBGLLJ算法检测效果较优,具有较高的重叠模块度以及重叠检测准确性,且运算效率较好.将所提算法应用于现实复杂机电系统因效性网络,重叠检测结果较好,具有较高的参考价值. 相似文献
3.
提出一种基于节点相似性的社团挖掘算法,算法首先根据节点的相似度值找出最相似邻居节点,合并节点形成若干个社团,然后优化模块度函数进行社团的合并,当模块度值最大时算法终止。最后,通过Zachary网络和Dolphin网络进行实验仿真,验证了算法的可行性和精准性。 相似文献
5.
复杂网络中的社团结构探测是当前复杂网络研究领域的一个热点问题。传统的社团划分算法主要以无向、无权网络作为分析对象,不能够适用于现实世界中各种有向网络、加权网络。在分析和研究各种社团划分算法的基础上,提出一种新的重叠社团发现算法。该算法从网络中的核心节点开始,不断合并适应度最大邻居节点,最终将网络划分为多个重叠的社团。最后,将该算法应用到两个有向网络中,实验表明该算法能够很好地划分出有向网络中的重叠社团。 相似文献
6.
社团结构分析有助于识别代谢网络中的功能模块,有助于理解代谢网络的结构和功能关系,是代谢网络研究领域的一个重要研究课题。然而,当前的社团结构分析方法均依赖于对网络中的节点进行聚类分析,导致每个节点只能属于某一个社团。采用了一种对复杂网络中的链接进行聚类分析的方法,对高质量金黄色葡萄球菌代谢网络模型的巨强连通体进行了社团结构分析,得到了10个具有生物学意义的功能模块,结果表明链接聚类可用于识别新陈代谢网络中的功能社团。 相似文献
7.
社团结构划分对复杂网络研究在理论和实践上都非常重要.借鉴分布式词向量理论,提出一种基于节点向量表达的复杂网络社团划分方法(CDNEV).为了构建网络节点的分布式向量,提出启发式随机游走模型.利用节点启发式随机游走得到的节点序列作为上下文,采用SkipGram模型学习节点的分布式向量.选择局部度中心节点作为K-Means算法的聚类中心点,然后用K-Means算法进行聚类,最终得到社团结构.在真实和模拟两种网络上做了丰富的实验,与主流的全局社团划分算法和局部社团划分算法作了比较.在真实网络上CDNEV算法的F1指标比其他算法平均提高19%;在模拟网络上,F1指标则可以提高15%.实验结果表明,相对其他算法,CDNEV算法的精度和效率都较高. 相似文献
8.
社团结构作为复杂网络的拓扑特性之一具有重要的理论和实践意义。提出一种基于节点依赖度和相似社团融合的社团结构发现算法,首先根据依赖度和相似度的定义将整个网络划分成若干个平均集聚系数较大的局部网络,构成网络的基础骨架社团;然后根据连接度的定义不断将社团边缘的节点和小社团吸收到相应的骨架网络中去,直到所有节点都得到准确的社团划分。算法在Zachary空手道俱乐部网络和海豚社会网络中进行了社团划分实验,并与GN算法和Newman快速算法进行了比较,结果表明该算法可以有效地划分社团边缘的模糊节点,社团划分结果具有较高的准确度。 相似文献
9.
识别社会关系网络中对传播过程影响力大的关键节点,对于理解并控制网络上的传播具有重要意义.文中提出了一种基于网络社团结构的节点影响力度量方法,基本思想是用与某个节点直接相连的社团的数目(称为该节点的VC值)来衡量该节点的传播能力.通过单源感染的SIR传播模型实验发现,在根据已有节点重要性度量指标进行排序后,用节点的VC值可进一步挖掘传播能力强的奇异节点.通过单源感染的SI传播模型的实验发现,在具有相同度值或K-壳值(KS)的节点中,以VC较高的节点作为感染源,感染速度更快且可获得更大的传播范围. 相似文献
10.
11.
结构洞是社会网络中的关键位置,对信息扩散起中介作用。为高效、准确地辨识具有社团结构的社会网络中占据结构洞的节点,提出了一种基于重叠社区和结构洞度的结构洞识别算法,旨在找到一组最具信息优势和控制优势的节点。基本思想是首先定位社区之间的重叠节点,然后利用节点的邻接差异和连接的社区差异衡量其非冗余性,计算出重叠节点的结构洞度,通过对结构洞度值升序排列发现占据结构洞的节点集。应用于实际数据集的实验结果表明,与网络约束系数算法、中介中心度算法、MaxD算法相比,该算法的识别准确度最高,时间复杂度最低。 相似文献
12.
针对GN算法在发现重叠社区时存在的不足,以及为了降低算法时间复杂度,提出一种基于网络图中连边相似度划分连边集的重叠社区发现算法EGN。算法依据网络图的连边集进行划分,每一条边被划分到某个特定的社区,而一个节点可以关联多条连边,因此节点可以被划分到不同的社区,从而发现重叠社区。EGN算法首先需要构造网络节点之间连边关系的边图;然后根据边图中节点的关系计算网络图中连边的相似度,在节点之间相似度的基础上提出了连边之间相似度的计算方法;再按照相似度由小到大对边图删除边,构建出边图的树状图。树状图的每一层对应网络的一个划分,采用划分密度函数来衡量划分的质量,以此寻找最优的划分。最后将算法应用到Zachary空手道俱乐部网络中,并与GN算法进行对比,实验结果表明EGN算法能够很好地发现重叠社区。 相似文献
13.
14.
基于节点的中心度和节点对社区的适应度,提出了一种新的重叠社区发现算法。该算法以中心度很大的节点作为初始社区,然后访问社区的邻居节点,把对社区适应度最大的节点加入到社区。如果节点对多个社区都具有很大的适应度,则这些节点归属于多个社区。考虑到社区之间的重叠性,将社区相似度很大的社区合并为一个社区。将该算法应用到Zachary空手道俱乐部网络和海豚社会网络中,实验表明该算法能够很好地划分出网络中的重叠社区。 相似文献
15.
提出了一种重叠社区发现的启发式算法。该算法基于局部贡献度的思想,以度最大的节点作为初始社区,逐步把对社区贡献最大的邻节点加入社区;同时考虑了社区的重叠性,若存在对多个社区贡献都很大的边界节点,则把边界节点同时加入到这些社区中。最后利用重叠系数对所划分的社区进行调整,使社区结构更加合理。对两个经典的社会网络Zachary和American College Football进行了实验测试,实验结果表明:该算法能快速准确地划分出社区,并能挖掘出社区间的边界节点。 相似文献
16.
社区结构可以为网络的其他分析挖掘提供中观尺度的分析视角,在大规模复杂网络的各项研究中是一项非常重要而基础的工作。社区的重叠是真实世界网络中常见的一种现象,重叠社区结构可以更准确地描述网络中真实的结构信息,因此,复杂网络重叠社区发现具有更加突出的现实意义。在综合对比分析了当前主要的重叠社区发现算法的基础上,结合信息论的相关知识,给出了一种基于信息论的社区定义,并进一步借鉴信息传播理论,从单个节点对关于某种主题的信息的掌握程度的角度出发提出了一种复杂网络重叠社区结构发现算法。基于实际数据集的相关实验表明,与传统的社区定义和社区发现算法相比,本算法发现的重叠社区从内容角度来看具有更加明确的实际意义,并且具有较低的时间复杂度。 相似文献
17.
鉴于计算代价高昂的谱聚类无法满足海量网络社区发现的需求,提出一种用于网络重叠社区发现的谱聚类集成算法(SCEA).首先,利用高效的近似谱聚类(KASP)算法生成个体聚类集合;然后,引入个体聚类选择机制对个体聚类进行优选,并对优选后的个体聚类建立簇相似图;最后,进行层次软聚类,得到网络节点的软划分.实验结果表明,与代表性算法(CPM,Link,COPRA,SSDE)相比较,SCEA能够挖掘出具有更高规范化互信息(NMI)的网络重叠社区结构,且具有相对较好的鲁棒性. 相似文献
18.
社团结构分析是复杂网络研究的一项重要内容。基于群体智能思想提出了一种自组织的重叠社团结构分析算法SO^2CSA^2。基本思想是:把网络视为一个群体,网络节点是其中的一个个具有简单智能的个体,每个个体依据定义的社团连接分数自主决定要加入的社团(可同时加入多个社团)。首先在网络中寻找一组K-派系作为初始社团结构;在此基础上,所有个体迭代地选择其社团归属,最终整个网络的社团结构将逐渐生长出来;最后对获得的社团结构进行后处理,即调整少量节点的社团归属,以提高其质量。在一组合成网络和现实世界网络上的实验表明,SO^2CSA^2发现的社团结构的质量比两种对比算法(SLPA和OSLOM)更好,尤其是在网络中重叠节点较多或节点重叠度较大的情况下,社团结构质量的提升更为明显。 相似文献
19.
20.
本文首先总结了社会网络中可信社团的特征,确定了可信社团的概念,并给出了可信社团的定量化定义。然后借鉴已有的无向网络上的重叠社团划分算法思想,设计并实现了一种有向网络上的重叠社团的划分算法,并在此基础上设计和实现了可信社团的划分算法。最后在典型的含有重叠社团的网络上和真实的可信社会网络上验证了两个算法的有效性。 相似文献