首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HfO2 films at various O2/Ar flow ratios were prepared by reactive dc magnetron sputtering. The effects of O2/Ar ratio on the structure and properties of HfO2 films were studied using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-Visible spectroscopy. The results showed that the HfO2 films were amorphous at different O2/Ar ratios, and the atomic ratio of O/Hf in the HfO2 films at high O2/Ar ratio was nearly to 2:1. The peaks of Hf4f and O1s shifted to higher binding energy with increasing the oxygen flow proportion. The HfO2 films at high O2/Ar ratio had high transmissivity at the range of 400-1100 nm.  相似文献   

2.
Present paper looks into the possibilities and limitations of near ultraviolet-visible range spectroscopic ellipsometry in investigating HfO2 thin films (thickness < 7 nm). The “high k” dielectric films were produced by Atomic Layer Deposition—ALD, sputtering, and Metalo-Organic Chemical Vapour Deposition—MOCVD, on silicon and on silicon/silicon dioxide structures. Using a simple optical model (Cauchy dispersion, with an Urbach absorption tail), suitable for the optical range investigated, we extract the thickness of the layers and their optical constants. Results related to the optical properties show the important impact made by the initial surface and the growth/deposition procedure. It is also shown that for the case of ALD HfO2 films grown on RTO oxides a significant increase in the absorption coefficient is recorded in the 4.7-5.15 eV range; this can be linked with the formation of defects related to oxygen vacancies. Subsequent anneal cycles performed in oxygen reveal that changes do occur both at the transition layer level, and in the structure of the HfO2 film, for which an increase in the absorption is recorded.  相似文献   

3.
Etching characteristics and the mechanism of HfO2 thin films in Cl2/Ar inductively-coupled plasma were investigated. The etch rate of HfO2 was measured as a function of the Cl2/Ar mixing ratio in the range of 0 to 100% Ar at a fixed gas pressure (6 mTorr), input power (700 W), and bias power (300 W). We found that an increase in the Ar mixing ratio resulted in a monotonic decrease in the HfO2 etch rate in the range of 10.3 to 0.7 nm/min while the etch rate of the photoresist increased from 152.1 to 375.0 nm/min for 0 to 100% Ar. To examine the etching mechanism of HfO2 films, we combined plasma diagnostics using Langmuir probes and quadrupole mass spectrometry with global (zero-dimensional) plasma modeling. We found that the HfO2 etching process was not controlled by ion-surface interaction kinetics and formally corresponds to the reaction rate-limited etch regime.  相似文献   

4.
HfO2 thin films were prepared by reactive DC magnetron sputtering technique on (100) p-Si substrate. The effects of O2/Ar ratio, substrate temperature, sputtering power on the structural properties of HfO2 grown films were studied by Spectroscopic Ellipsometer (SE), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrum, and X-ray photoelectron spectroscopy (XPS) depth profiling techniques. The results show that the formation of a SiOx suboxide layer at the HfO2/Si interface is unavoidable. The HfO2 thickness and suboxide formation are highly affected by the growth parameters such as sputtering power, O2/Ar gas ratio during sputtering, and substrate temperature. XRD spectra show that the deposited films have (111) monoclinic phase of HfO2, which is also supported by FTIR spectra. XPS depth profiling spectra shows that highly reactive sputtered Hf atoms consume some of the oxygen atoms from the underlying SiO2 to form HfO2, leaving Si-Si bonds behind.  相似文献   

5.
Hafnium oxide (HfO2) films were prepared using a pulsed sputtering method and different O2/(O2 + Ar) ratios, deposition pressures, and sputtering powers. Spectroscopic ellipsometry (SE) and positron annihilation spectroscopy (PAS) were used to investigate the influence of the deposition parameters on the number of open volume defects (OVDs) in the HfO2 films. The results reveal that a low O2/(O2 + Ar) ratio is critical for obtaining films with a dense structure and low OVDs. The film density increased and OVDs decreased when the deposition pressure was increased. The film deposited at high sputtering power showed a denser structure and lower OVDs. Our results suggest that SE and PAS are effective techniques for studying the optical properties of and defects in HfO2 and provide an insight into the fabrication of high-quality HfO2 thin films for optical applications.  相似文献   

6.
W.T. Tang  Z.G. Hu  J. Sun  J.D. Wu 《Thin solid films》2010,518(19):5442-5446
A plasma assisted reactive pulsed laser deposition process was demonstrated for low-temperature deposition of thin hafnia (HfO2) and zirconia (ZrO2) films from metallic hafnium or zirconium with assistance of an oxygen plasma generated by electron cyclotron resonance microwave discharge. The structure and the interface of the deposited films on silicon were characterized by means of Fourier transform infrared spectroscopy, which reveals the monoclinic phases of HfO2 and ZrO2 in the films with no interfacial SiOx layer between the oxide film and the Si substrate. The optical properties of the deposited films were investigated by measuring the refractive indexes and extinction coefficients with the aid of spectroscopic ellipsometry technique. The films deposited on fused silica plates show excellent transparency from the ultraviolet to near infrared with sharp ultraviolet absorption edges corresponding to direct band gap.  相似文献   

7.
Use of germanium as a storage medium combined with a high-k dielectric tunneling oxide is of interest for non-volatile memory applications. The device structure consists of a thin HfO2 tunneling oxide with a Ge layer either in the form of continuous layer or discrete nanocrystals and relatively thicker SiO2 layer functioning as a control oxide. In this work, we studied interface properties and formation kinetics in SiO2/Ge/HfO2(Ge) multilayer structure during deposition and annealing. This material structure was fabricated by magnetron sputtering and studied by depth profiling with XPS and by Raman spectroscopy. It was observed that Ge atoms penetrate into HfO2 layer during the deposition and segregate out with annealing. This is related to the low solubility of Ge in HfO2 which is observed in other oxides as well. Therefore, Ge out diffusion might be an advantage in forming well controlled floating gate on top of HfO2. In addition we observed the Ge oxidation at the interfaces, where HfSiOx formation is also detected.  相似文献   

8.
The time dependent preferential sputtering in the HfO2 layer on Si(100) has been investigated in-situ with X-ray photoelectron spectroscopy during Ar ion sputtering. Hf4f, O1s, and Si2p spectra show that three bonding environments (Hf0+ from the Hf metal, Hf2+ from HfO, and Hf4+ from HfO2) co-exist inside the HfO2 layer during sputtering. The Hf4+ doublet decreases with sputtering time in an exponential-like function. Both Hf0+ and Hf2+ doublets increase with sputtering time in opposite ways. Two concurrent sputtering mechanisms characterizing the formation of HfO and Hf due to preferential sputtering of oxygen within the HfO2 layer can well explain the detailed bond breaking and re-formation process. The Hf metal is the final product and the HfO is an intermediate product during sputtering under vacuum. The HfO cannot be removed and acts as a residual component in the HfO2 layer.  相似文献   

9.
The chemical structure and electrical properties of HfO2 thin film grown by rf reactive magnetron sputtering after rapid thermal annealing (RTA) were investigated. The chemical composition of HfO2 films and interfacial chemical structure of HfO2/Si in relation to the RTA process were examined by X-ray photoelectron spectroscopy. Hf 4f and O 1s core level spectra suggest that the as-deposited HfO2 film is nonstoichiometric and the peaks shift towards lower binding energy after RTA. The Hf-Si bonds at the HfO2/Si interface can be broken after RTA to form Hf-Si-O bonds. The electrical characteristics of HfO2 films were determined by capacitance-voltage (C-V) and current density-voltage (J-V) measurements. The results showed that the density of fixed charge and leakage current density of HfO2 film were decreased after the RTA process in N2 atmosphere.  相似文献   

10.
Polycrystalline CaCu3Ti4O12 thin films were deposited on Pt(111)/Ti/SiO2/Si substrates using radio frequency magnetron sputtering. The phase formation and the physical quality of the films were crucially dependent on the substrate temperature and oxygen partial pressure. Good quality films were obtained at a substrate temperature of 650 °C and 4.86 Pa total pressure with 1% O2. The dielectric constant (∼ 5000 at 1 kHz and 400 K) of these films was comparable to those obtained by the other techniques, eventhough, it was much lower than that of the parent polycrystalline ceramics. For a given temperature of measurements, dielectric relaxation frequency in thin film was found to be much lower than that observed in the bulk. Also, activation energy associated with the dielectric relaxation for the thin film (0.5 eV) was found to be much higher than that observed in the bulk ceramic (0.1 eV). Maxwell-Wagner relaxation model was used to explain the dielectric phenomena observed in CaCu3Ti4O12 thin films and bulk ceramics.  相似文献   

11.
HfO2/SiO2 and Al2O3/SiO2 multilayers to be employed as high reflectance end mirrors in Cerium-doped fluoride solid-state lasers were produced by radio frequency sputtering. The components were designed to have high transmittance at the pumping wavelength and high reflectance in a wavelength band corresponding to the active medium emission. A photoacoustic beam deflection technique and inspection of the irradiated area under a microscope were used to measure the laser induced damage threshold of the mirrors at the pumping wavelength. These coatings were tested in a laser cavity.  相似文献   

12.
Ultra thin HfO2 films were grown by the atomic layer deposition (ALD) technique using tetrakismethylethylaminohafnium (Hf[N(CH)3(C2H5)]4) and ozone (O3) as the precursors and subsequently exposed to various plasma conditions, i.e., CCP (capacitively coupled plasma) and MMT (modified magnetron typed plasma) in N2 or N2/O2 ambient. The conventional CCP treatment was not effective in removing the carbon impurities, which were incorporated during the ALD process, from the HfO2 films. However, according to the X-ray photoelectron spectroscopy measurements, the MMT treated films exhibited a significant reduction in their carbon contents and the efficient incorporation of nitrogen atoms. Although the incorporated nitrogen was easily released during the post-thermal annealing of the MMT treated samples, it was more effective than the CCP treatment in removing the film impurities. Consequently, the MMT treated samples exhibited excellent electrical properties as compared to the as-deposited HfO2 films, including negligible hysteresis (flatband voltage shift), a low leakage current, and the reduced equivalent oxide thickness of the gate stack. In conclusion, MMT post treatment is more effective than conventional CCP treatment in improving the electrical properties of high-k films by reducing the carbon contamination and densifying the as-deposited defective films.  相似文献   

13.
Thin HfO2 films were grown as high-k dielectrics for Metal-Insulator-Metal applications by Atomic Vapor Deposition on 8 inch TiN/Si substrates using pure tetrakis(ethylmethylamido)hafnium precursor. Influence of deposition temperature (320-400 °C) and process pressure (2-10 mbar) on the structural and electrical properties of HfO2 was investigated. X-ray diffraction analysis showed that HfO2 layers, grown at 320 °C were amorphous, while at 400 °C the films crystallized in cubic phase. Electrical properties, such as capacitance density, capacitance-voltage linearity, dielectric constant, leakage current density and breakdown voltage are also affected by the deposition temperature. Finally, TiN/HfO2/TiN stacks, integrated in the Back-End-of-Line process, possess 3 times higher capacitance density compared to standard TiN/Si3N4/TiN capacitors. Good step coverage (> 90%) is achieved on structured wafers with aspect ratio of 2 when HfO2 layers are deposited at 320 °C and 4 mbar.  相似文献   

14.
ZrO2 gate dielectric thin films were deposited by radio frequency (rf)-magnetron sputtering, and its structure, surface morphology and electrical properties were studied. As the oxygen flow rate increases, the surface becomes smoother. The experimental results indicate that a high temperature annealing is desirable since it improves the electrical properties of the ZrO2 gate dielectric thin films by decreasing the number of interfacial traps at the ZrO2/Si interface. The carrier transport mechanism is dominated by the thermionic emission.  相似文献   

15.
L. Liljeholm  T. Nyberg  A. Roos 《Vacuum》2010,85(2):317-321
Coatings of SiO2-TiO2 films are frequently used in a number of optical thin film applications. In this work we present results from depositing films with variable Si/Ti ratios prepared by reactive sputtering. The different Si/Ti ratios were obtained by varying the target composition of composite single targets. Compared to co-sputtering this facilitates process control and composition uniformity of the films. Varying the oxygen supply during sputter deposition can result in films ranging from metallic/substoichiometric to stoichiometric oxides. Transmittance spectra of the different films are presented and the optical constants are determined from these spectra. Furthermore, the deposition process, films structure and composition of the films are discussed. The study shows that by choosing the right composition and working in the proper oxygen flow range, it is possible to tune the refractive index.  相似文献   

16.
Alumina (Al2O3) thin films were sputter deposited over well-cleaned glass and Si < 100 > substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 °C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al2O3-Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance, AC conductivity and activation energy were determined and the results are discussed.  相似文献   

17.
Atomic layer deposition was applied to fabricate metal oxide films on planar substrates and also in deep trenches with appreciable step coverage. Atomic layer deposition of Ru electrodes was realized on planar substrates. Electrical and structural behaviour of HfO2-TiO2 and Al2O3-TiO2 nanolaminates and mixtures as well as Al2O3 films were evaluated. The lowest leakage current densities with the lowest equivalent oxide thickness were achieved in mixed Al2O3-TiO2 films annealed at 700 °C, compared to all other films in as-deposited state as well as annealed at 900 °C. The highest permittivities in this study were measured on HfO2-TiO2 nanolaminates.  相似文献   

18.
The microstructure of thin HfO2-Al2O3 nanolaminate high κ dielectric stacks grown by atomic vapor deposition has been studied by attenuated total reflection spectroscopy (ATR) and 8 eV spectroscopic ellipsometry (SE). The presence of Al2O3 below HfO2 prevents the crystallisation of HfO2 if an appropriate thickness is used, which depends on the HfO2 thickness. A thicker Al2O3 is required for thicker HfO2 layers. If crystallisation does occur, we show that the HfO2 signature in both ATR and 8 eV SE spectra allows the detection of monoclinic crystallites embedded in an amorphous phase.  相似文献   

19.
(Ba,Sr)TiO3 films were prepared on Pt/Ti/SiO2/Si substrates by mirror-confinement-type electron cyclotron resonance (ECR) plasma sputtering as well as by metal-organic decomposition (MOD). The films prepared by ECR plasma sputtering were crystallized at lower temperatures with better crystallinity and a denser structure than those by MOD. As for dielectric constant, films prepared by ECR plasma sputtering exhibited a relatively high value over 500 at a low annealing temperature of 873 K, whereas films by MOD exhibited approximately 350. This is attributed to the better crystallinity and the denser structure of the films by ECR plasma sputtering. The leakage current density of the films was found to be similar in both processes.  相似文献   

20.
Hafnium oxide (HfO2 or hafnia) holds promise as a high-index dielectric in optical devices and thermal barrier coatings, because of its transparency over a broad spectrum (from the ultraviolet to the mid-infrared) and chemical and thermal stability at high temperatures. In the present work, thin hafnia films of thicknesses from about 180 to 500 nm are deposited on Si substrates using reactive magnetron sputtering. The crystalline structure and surface topography are characterized by X-ray diffraction and atomic force microscopy, respectively. The optical and radiative properties of the film-substrate composites are measured at room temperature using spectroellipsometry and Fourier-transform infrared spectrometry. The optical constants are obtained from about 0.37 to 500 μm by fitting suitable models to the experimental results. Optical properties and dielectric function modeling are discussed with correlation to both film thickness and surface roughness. It is found that a single-oscillator dielectric-function model can describe radiative properties from about 1 to 20 μm. By combining Cauchy's formula (for the visible and near-infrared regions) with a multiple-oscillator Lorentz model (for the far-infrared region), a dielectric function is obtained for the HfO2 films that is applicable from the visible to the far-infrared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号