首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I. M. Morrison  J. C. Hawke 《Lipids》1977,12(12):994-1004
The effect of increasing the linoleic acid (18∶2) content of milk fat on the composition and structure of the triglycerides (TG) was investigated. Protected sunflower seed supplement was added to the diet of a cow grazing on pasture, and the structure and composition of the milk fat compared with the milk fat from its monozygous twin which had been fed a control diet. The relative proportions of TG fractions of high, medium, and low molecular weight in the milk fat with elevated levels of 18∶2 (15.5% 18∶2) were 43.0, 19.5, and 37.5 moles %, respectively, compared with 36.1, 19.7, and 44.2 moles %, respectively, in the milk fat from the cow fed the control diet. Separation of these three TG fractions of each milk fat into TG classes with different levels of unsaturation showed that the milk fat with elevated levels of 18∶2 contained higher proportions of diene, triene, and tetraene TG and correspondingly lower proportions of saturated and, to a lesser extent, monoene TG. The saturated and monoene TG from the two milk fats had similar fatty acid compositions. However, the diene TG of the 18∶2-rich milk fat included high proportions of the combination of 18∶2 with two saturated fatty acids (FA) which are minor constituents of normal milk fats. Likewise, the triene TG reflected the presence of 18∶2 in combination with 18∶1 and a saturated FA.  相似文献   

2.
The fatty acid composition of 39 mature human milk samples from four Spanish women collected between 2 and 18 weeks during lactation was studied by gas chromatography. The conjugated linoleic acid (CLA) isomer profile was also determined by silver‐ion HPLC (Ag+‐HPLC) with three columns in series. The major fatty acid fraction in milk lipids throughout lactation was represented by the monounsaturated fatty acids, with oleic acid being the predominant compound (36–49% of total fatty acids). The saturated fatty acid fraction represented more than 35% of the total fatty acids, and polyunsaturated fatty acids ranged on average between 10 and 13%. Mean values of total CLA varied from 0.12 to 0.15% of total fatty acids. The complex mixture of CLA isomers was separated by Ag+‐HPLC. Rumenic acid (RA, cis‐9 trans‐11 C18:2) was the major isomer, representing more than 60% of total CLA. Trans‐9 trans‐11 and 7‐9 (cistrans + transcis) C18:2 were the main CLA isomers after RA. Very small amounts of 8‐10 and 10‐12 C18:2 (cis‐trans + trans‐cis) isomers were detected, as were different proportions of cis‐11 trans‐13 and trans‐11 cis‐13 C18:2. Although most of the isomers were present in all samples, their concentrations varied considerably.  相似文献   

3.
The traditional procedure for isolating milk fat globules involves repeated cycles of centrifuging to obtain globules and redispersion of them in fresh buffer to eliminate other milk components. We have evaluated a simpler, less manipulative method whereby globules are centrifuged out of the milk and through an overlying buffer layer. Human milk samples ranging from 0.1 to 35 ml were centrifuged at 1500×g for 20 min after deposition under a suitable quantity of buffer. This yielded purified globules, in less time, which could be dispersed more satisfactorily than those by the traditional procedure. Protein, phospholipid and cholesterol contents of globules by the two methods were quite similar. A lower protein content (10.4 vs 13.2 mg/g of lipid) was characteristic of globules prepared by the multiple wash method. However, large differences could not be seen in gel electrophoresis patterns of the proteins. By using plastic centrifuge tubes, tube freezing and cleavage just below the globule layer enables clean separation of globule and nonglobule phases for analysis of milk component distributions. Macro (5 to 35 ml of sample) and micro (200 μl or less) versions of the method are described. Limited trials showed that the method can be applied satisfactorily to cow's and goat's milks, but for highly pure globules a deeper buffer column than that used with human milk is required because of their much higher casein content.  相似文献   

4.
Native milk fat globules of various mean diameters, ranging from d43 = 1.5 to 7.3 μm, were obtained using microfiltration of raw whole milk acquired in winter and spring. After total lipid extraction, fatty acid composition was characterized by methyl and butyl ester analysis using gas chromatography. The oleic and linoleic acid content of milk obtained in winter increased with fat globule size, whereas myristic and palmitic acid decreased. There was significantly more lauric, myristic and palmitoleic acid, and less stearic acid in small fat globules compared to large fat globules in milk obtained in both winter and spring. The relative content of oleic and linoleic acids were found to depend on fat globule size and season. Results are interpreted on the basis of the relative content of milk fat globule membrane depending on fat globule size, and on consequences of compositional variations on milk fat globule melting behavior.  相似文献   

5.
Native milk fat globules of various mean diameters, ranging from d43 = 2.3 µm to 8.0 µm, were obtained using microfiltration of raw whole milk. After milk fat globule washing, the milk fat globule membrane (MFGM) was separated by manual churning. After total lipid extraction and separation of polar lipids, their phospholipid (PL) and sterol composition was measured using thin‐layer chromatography, methyl ester analyses by gas chromatography, and gas chromatography coupled to mass spectrometry. The main PL species were phosphatidylethanolamine, phosphatidylcholine and sphingomyelin. The respective fatty acid composition of each PL species was measured. Many different minor bioactive sterols were detected in the MFGM, e.g. lanosterol, lathosterol, desmosterol, stigmasterol and β‐sitosterol. No significant differences in the PL and sterol profile were found between MFGM extracted from small and large milk fat globule fractions.  相似文献   

6.
The aim of this study was to characterize the fatty acid composition of the core and membrane of differently sized milk fat globules separated by microfiltration, which can now be used to manufacture dairy products. Native milk fat globules of various mean diameters, ranging from d43 = 2.3 µm to 8.0 µm, were obtained using microfiltration of raw whole milk. After milk fat globule washing, the milk fat globule membrane (MFGM) and the triglyceride core (TC) were separated by manual churning. After total lipid extraction from each fraction, their fatty acid composition was characterized using methyl ester analysis by gas chromatography. Regardless of season, no significant differences were observed in the fatty acid composition of the MFGM phospholipids. Conversely, significant differences were found in the fatty acid composition of TC; particularly, small fat globule TC contained more medium‐chain fatty acids and less stearic acid than large fat globule TC. These results show that the previously observed differences in total fatty acid composition among differently sized milk fat globules are due to their triglyceride composition and MFGM amount rather than to the composition of the MFGM.  相似文献   

7.
I. M. Morrison  J. C. Hawke 《Lipids》1979,14(4):391-394
The thermal properties of bovine milk fat containing 15.5% linoleic acid have been compared with those of milk fat containing a normal level (1.8%) of linoleic acid in order to examine the influence of altered triglyceride (TG) composition on their physical characteristics. The total TGs of 18∶2-rich milk fat melted over the range −38 to 30 C compared with the range −33 to 34 C for control milk fat. Polymorphism exhibited by the high mol wt TGs of control milk fat was absent in the same fraction of 18∶2-rich milk fat. Similarly, the complex melting thermogram of the low mol wt TGs of control milk fat and its obvious polymorphic behavior contrasted with the single broad melting peak of the low mol wt TGs of 18∶2-rich milk fat. This solid miscibility in the 18∶2-rich milk fat could be a consequence of the lower proportion of saturated TGs or the presence of high proportions of diene and triene TGs containing 18∶2 instead of monoene and diene TGs containing 18∶1.  相似文献   

8.
I. M. Morrison  J. C. Hawke 《Lipids》1977,12(12):1005-1011
A stereospecific distribution of fatty acids in bovine milk fat containing 15.5% linoleic acid has been compared with the distribution in bovine milk fat containing a normal level (1.8%) of linoleic acid. The positional distribution was obtained by the separate analysis of milk fat triglycerides of high, medium, and low molecular weight. The order of preference for linoleic acid in the high molecular weight triglycerides was position 3>position 2 >position 1. There was an accompanying altered distribution of myristic acid and palmitic acid in favor of position 1 at the expense of position 3. However, the proportions of myristic acid and palmitic acid in position 2, relative to positions 1 and 3 were identifical in the high molecular weight fractions of the two milk fats. The distribution of linoleic acid in the medium molecular weight triglycrides of linoleic-rich milk fat was position 1=position 2>position 3. This resulted in a change in the distribution of 18 carbon monounsaturated fatty acids in favor of position 2 at the expense of position 1, but the distribution of myristic acid and palmitic acid was virtually unaltered. The distribution of linoleic acid in the low molecular weight triglycerides was position 2>position 1>position 3. The amounts of myristic acid and palmitic acid in position 2 and of palmitic acid in position 1 decreased in the low molecular weight triglycerides of the milk fat containing elevated levels of linoleic acid. Changes in the distribution of fatty acids which were observed in the separate analysis of the high, medium, and low molecular weight triglycerides were not apparent when comparing the distribution in the total milk fats. For example, the distribution of myristic acid and palmitic acid appeared to be unchanged, while the distribution of 18 carbon monounsaturated fatty acids was slightly altered in favor of positions 2 and 3. Moreover, linoleic acid showed an almost equal preference for the three positions of the glycerol moiety in milk fat containing elevated levels of this fatty acid with some concentration at position 2.  相似文献   

9.
Milk fat was fractionated by solvent (acetone) fractionation and dry fractionation. Based on their fatty acid and acyl-carbon profiles, the fractions could be divided into three main groups: high-melting triglycerides (HMT), middle-melting triglycerides (MMT), and low-melting triglycerides (LMT). HMT fractions were enriched in long-chain fatty acids, and reduced in short-chain fatty acids and unsaturated fatty acids. The MMT fractions were enriched in long-chain fatty acids, and reduced in unsaturated fatty acids. The LMT fractions were reduced in long-chain fatty acids, and enriched in short-chain fatty acids and unsaturated fatty acids. Crystallization of these fractions was studied by differential scanning calorimetry and X-ray diffraction techniques. In this study, the stable crystal form appeared to be the β′-form for all fractions. At sufficiently low temperature (different for each fraction), the β′-form is preceded by crystallization in the metastable α-form. An important difference between the fractions is the rate of crystallization in the β′-form, which proceeds at a much lower rate for the lower-melting fat fractions than for the higher-melting fat fractions. This may be due to the much lower affinity for crystallization of the lower-melting fractions, due to the less favorable molecular geometry for packing in the β′-crystal lattice.  相似文献   

10.
11.
Populations of large and small milk fat globules were isolated and analyzed to determine differences in fatty acid composition. Globule samples were obtained by centrifugation from milks of a herd and of individual animals produced under both pasture and barn feeding. Triacylglycerols of total globule lipids were prepared by thin layer chromatography and analyzed for fatty acid composition by gas chromatography. Using content of the acids in large globules as 100%, small globules contained fewer short-chain acids, −5.9%, less stearic acid, −22.7%, and more oleic acids, +4.6%, mean values for five trials. These differences are consistent with alternative use of short-chain acids or oleic acid converted from stearic acid to maintain liquidity at body temperature of milk fat globules and their precursors, intracellular lipid droplets. Stearyl-CoA desaturase (EC 1.14.99.5), which maintains fluidity of cellular endoplasmic reticulum membrane, is suggested to play a key role in regulating globule fat liquidity. Possible origins of differences between individual globules in fatty acid composition of their triacylglycerols are discussed.  相似文献   

12.
The trans-10, cis-12 isomer of conjugated linoleic acid (CLA) decreases TAG accumulation in 3T3-L1 adipocytes, reduces lipid accretion in growing animals, and inhibits milk fat synthesis in lactating mammals. However, there is evidence to suggest that other FA may also exert antilipogenic effects. In the current experiment, the effects of geometric isomers of 10,12 CLA on milk fat synthesis were examined using four Holstein-British Friesian cows in a 4×4 Latin Square experiment with 14-d periods. Treatments consisted of abomasal infusions of skim milk, or skim milk containing trans-10, cis-12 CLA (T1), trans-10, trans-12 CLA (T2), or a mixture of predominantly 10,12 isomers containing (g/100 g) trans-10, cis-12 (35.0), cis-10, trans-12 (23.2), trans-10, trans-12 (14.9), and cis-10, cis-12 (5.1). CLA supplements were prepared from purified ethyl linoleate and infused as nonesterified FA. Infusions were conducted over a 4-d period with a 10-d interval between treatments and targeted to deliver 4.5 g/d of 10,12 CLA isomers. Compared with the control, trans-10, trans-12 CLA had no effect (P>0.05) on milk fat yield, whereas treatments T1 and T3 depressed (P<0.05) milk fat content (19.8 and 22.9%, respectively) and decreased milk fat output (20.8 and 21.3%, respectively). Comparable reductions in milk fat synthesis to 4.14 and 1.80 g trans-10, cis-12/d supplied by treatments T1 and T3 indicate that other 10,12 geometric isomers of CLA have the potential to exert antilipogenic effects. The relative abundance of cis-10, trans-12 CLA in treatment T3 and the low transfer efficiency of this isomer into milk suggest that cis-10, trans-12 CLA was the active component.  相似文献   

13.
The amounts of 14 conjugated linoleic acid (CLA) isomers (t12t14, t11t13, t10t12, t9t11, t8t10, t7t9, t6t8; 12,14 c/t, t11c13, c11t13, t10c12, 9,11 c/t, t8c10, t7c9‐18:2) in 20 beef samples were determined by triple‐column silver‐ion high‐performance liquid chromatography (Ag+‐HPLC). Quantitation was performed using an external CLA reference standard consisting of cis9,trans11‐18:2,trans9,trans11‐18:2 and cis9,cis11‐18: 2. Linearity was checked as being r > 0.9999 between 0.02 × 10‐3 to 2 mg/ml. The determination limit (5‐fold signal/noise ratio) of the CLA reference was estimated to be 0.25, 0.50, 1.0 ng/injection for the cis/trans, trans,trans and cis,cis isomers, respectively. As expected, cis9,trans11‐18:2 was the predominant isomer (1.95 ± 0.54 mg/g fat) in beef, followed by trans7,cis9‐18:2 (0.19 ± 0.04 mg/g fat); cis,cis isomers were below the determination limit in most beef samples. Total CLA amounts determined by Ag+‐HPLC were compared to total CLAs determined by gas chromatography (GC, 100 m CPSilTM 88 column). The amounts obtained by GC were generally higher than those determined by Ag+ ‐HPLC due to co‐eluting compounds.  相似文献   

14.
Robinson NP  MacGibbon AK 《Lipids》2000,35(7):789-797
Reversed-phase high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection at 233 nm was used to separate, quantify, and identify the triacylglycerols (TAG) of milk fat that contain conjugated linoleic acid (CLA). The absorbance at 233 nm was substantially due to CLA-TAG (chromatography of some representative TAG devoid of CLA, such as tripalmitin and triolein, showed poor responses at 233 nm, 1/800th that of CLA-TAG). A CLA molar extinction coefficient at 233 nm of 23 360 L mol−1 cm−1 and an HPLC UV response factor were obtained from a commercially available cis-9, trans-11-CLA standard. This molar extinction coefficient was only 86% reported literature values. Summation of all chromatographic peaks absorbing at 233 nm using the corrected response factor gave good agreement with independent determinations of total CLA by gas chromatography and UV spectrophotometry. This agreement allowed quantification of individual CLA-TAG peaks in the HPLC separation of a typical New Zealand bovine milk fat. Three CLA-containing TAG, CLA-dipalmitin, CLA-oleoyl-palmitin and CLA-diolein, were prepared by interesterification of tripalmitin with the respective fatty acid methyl esters and used to assign individual peaks in the reversed-phase chromatography of total milk fat, of which CLA-oleoyl-palmitin was coincident with the largest UV peak. Band fractions from argentation thin-layer chromatography of total milk fat were similarly employed to identify five predominant CLA-TAG groups in total milk fat: CLA-disaturates, CLA-oleoyl-saturates, CLA-vaccenyl-saturates, CLA-vaccenyl-olein, and CLA-diolein.  相似文献   

15.
The location and origin of carotenoids in bovine milk fat globules was investigated using spectral absorption of lipid solutions at 461 nm to quantitate carotene. Release of membrane from globules as a result of churning to butter or by freezing and thawing of the globules yielded membrane preparations which were devoid of carotene. Globule cores from these procedures exhibited carotene concentrations comparable to those in total milk lipids. Fractionation of lactating bovine tissue and analysis of lipid extracts revealed that the intracellular fat droplets have carotene concentrations approximating those of secreted blobules. However, intracellular membranes of the tissue, particularly the mitochondria, are much richer in carotenoids than formative or secreted fat globules. The evidence indicates that bovine milk fat globules acquire carotene during their formation in the cell, but that some minor fraction of the total carotene may be extracted from the enveloping secretory membrane. Mean carotene values (μg/g of lipid) for fractions from three samples of lactating tissue were: whole tissue 47, mitochondria 461, microsomes 69, cytosol 67, fat droplets 8, milk 9. One tissue analysis indicated that Golgi membranes contain somewhat more carotene than do microsomes.  相似文献   

16.
A representative number of different milk fats based on a wide range of feeding and lactation conditions as well as 123 German margarines, shortenings, cooking and dietetic fats were analyzed for a variety of trans-C18:2 isomers (exhibiting at least one trans double bond) by means of gas chromatography on a 100m Sil 88 capillary column. In milk fats contents of trans Δ9,trans Δ12,cis Δ9,trans Δ13 (+ trans Δ8,cis Δ12),trans Δ8,cis Δ13,cis Δ9,trans Δ12,trans Δ9,cis Δ12 and trans Δ11,cis Δ15 amounted to 0.09%, 0.11%, 0.11%, 0.10%, 0.07% and 0.33% on average and the content of total trans-C18:2 isomers (without cis Δ9, trans Δ11) was 0.99% in the mean. The content of conjugated linoleic acid cis Δ9,trans Δ11 amounted to 0.81% on average in 238 milk fats. In margarine among others the isomers trans Δ9,trans Δ12,cis Δ9,trans Δ13 (+ trans Δ8,cis Δ12), cis Δ9,trans Δ12 and trans Δ9,cis Δ12 were determined and quantified to 0.03%, 0.04%, 0.29% and 0.23% on average. The mean total content of trans-C18:2 isomers in margarines was 0.61%. Moreover, for all trans-C18:2 isomers the frequency distributions as well as the correlation coefficients towards the trans-C18:1 isomers trans Δ6 to trans Δ16 were derived.  相似文献   

17.
Biocatalysis of linoleic acid to conjugated linoleic acid   总被引:1,自引:1,他引:1  
CLA refers to a group of geometrical and positional isomers of linoleic acid (LA) with conjugated double bonds. CLA has been reported to have diverse health benefits and biological properties. Traditional organic synthesis is highly capital-intensive and results in an isomeric mixture of CLA isomers. Biotechnology presents new alternatives to traditional lipid manufacturing methods. The objective of this study was to examine the effect of protein isolation procedures on linoleate isomerase (LAI) recovery from microbial cells and biocatalysis of LA to CLA. Protein isolation experiments were carried out using Lactobacillus acidophilus L1 and two strains of Lactobacillus reuteri (ATCC 23272 and ATCC 55739). Under the same assay conditions, ATCC 55739 had the highest LAI activity among the microbial cultures examined in this study. Efficiency of cell lysis methods, which included various combinations of lysozyme and mutanolysin treatments in combination with sonication and osmotic rupture of cells with liquid nitrogen, was very low. Although treatment of cell material with a detergent (octylthioglucoyranoside) freed a significant amount of LAI activity into the solution, it was not sufficient to recover all the LAI activity from the residual cells. Crude LAI preparations produced mainly the cis-9,trans-11 CLA isomer. Time and substrate/protein ratio had a significant effect on biocatalysis of LA to CLA. It appears that the mechanism and kinetics of enzymatic conversion of LA to CLA are quite complex and requires further research using pure LAI preparations. Published with approval of the Director, Oklahoma Agricultural Experiment Station.  相似文献   

18.
Semipurified diets containing ratios of α-linolenic acid (18∶3ω3) to linoleic acid (18∶2ω6) of 1/32, 1/7, 1/1, and 3.5/1 in the form of corn oil, soybean oil, soybean/linseed oil mix and linseed oil were fed to rats for 2 months. The first 3 diets were fed to another group of rats for 4 months and to a group through the second generation. Fatty acid analysis of liver and spleen ethanolamine glycerophosphatide revealed that, as the level of 18∶3ω3 in the diet increased, the elongated, desaturated metabolites of the ω6 series decreased and the ω3 series increased. Noteworthy was the depression in the amount of the precursor of the 2-series prostaglandins (PG) as the ω3 levels increased. Synthesis of PG by liver of rats fed 2 or 4 months markedly decreased, but at 2 months in thymus and spleen, it showed a trend toward decreasing only. Brain slices showed no decrease in PGF synthesis after 4 months, but did decrease significantly after feeding the diets to the second generation. Synthesis of PGE2 by spleen homogenate from the second generation also significantly decreased. The replacement of ω6 series fatty acids by ω3 series is explained by the effective competition of 18∶3ω3 over 18∶2ω6 for the Δ6 desaturase. Depressions in PG synthesis by high dietary 18∶3ω3 is explained by the competitive inhibition of the PG synthetase complex by 20∶5ω3 as well as by the decreased levels of 20∶4ω6. Part of a dissertation submitted by Lisa A. Marshall in partial fulfillment of requirements for the Ph.D. degree in Nutritional Sciences. Presented in part at the 72nd AOCS annual meeting, New Orleans, May 1981.  相似文献   

19.
Pancreatic lipase hydrolysis was used to determine the distribution of fatty acids in the milk triglycerides of four species of monkeys and of human milk. The patterns of the major fatty acids were generally similar in all species examined, but there were some differences in the relative concentrations of individual fatty acids esterified at either the 2 or 1,3 positions. Caprylic, stearic, oleic, and linoleic acids were found predominantly at the 1,3 positions; in contrast, lauric, myristic, palmitic, and palmitoleic were concentrated at the 2 position. Monkey milk fats had greater proportions of these acids at the respective positions than did bovine milk fat. Also, the monkey fats were relatively uniform both in total unsaturated fatty acids (41–48%) and in the proportion of these esterified at the 2 position (19–26%). In general, both the fatty acid composition and the specific distribution of fatty acids in the monkey milk fats more closely resembled the patterns in human milk fat than did those in ruminant milk fats.  相似文献   

20.
The aim of this study was to determine the effects of a diet supplemented with rumenprotected linoleic acids (C18:2) on the composition of milk fat and the energy balance of dairy cattle during the first 15 wk of lactation. The 32 Holstein‐Friesian cows were allotted in two treatment groups; in the experimental group one‐third of the starch (relative to the control group) was substituted with protected fat on an energy basis. Milk samples from all cows were collected weekly from week 2 to 15 postpartum (p.p.). To analyze the milk fat composition milk samples from 16 cows in each group were collected from week 6 and 7 as well as from week 13 and 14 p.p. and were mixed together, respectively. Triglyceride analysis demonstrated an extensive use of depot fat in both cow groups at the beginning of the lactation period. However, calculated energy balance, triglyceride composition and back fat thickness showed that the usual deficit of energy intake in early lactation was significantly shortened in the experimental group by three weeks. In comparison with the control group the content of the saturated fatty acids (FAs) C12, C14 and C16 in the experimental group decreased by 17.3% at 6 to 7 wk and by 19.2% at 13 to 14 wk. The stearic acid content of milk fat was increased by 25.9% at 6 to 7 wk and by 27.7% at 13 to 14 wk in the experimental group. The content of cis Δ9 oleic acid was increased by 21.6% at 6 to 7 and by 30.3% at 13 to 14 wk, while the C18:2 FA content was doubled as compared with the control group. Thus besides the increase of the trans‐C18:1 FA (TFA) content the nutritional value of fats could be improved using the experimental fat supplement. The TFA content still remained within the range of variation of natural milk fats. Additionally the experimental fat intake led to a number of desired effects; an increase in the content of conjugated linoleic acids (cis Δ9, transΔ11) by 55.9% (6 to 7 wk) and by 97.1% (13 to 14 wk p.p.), respectively, and a decrease in the cholesterol level. Further, the butyric acid content increased relatively by more than 20%. The addition of this fat resulted simultaneously in a changed triglyceride composition with increased C50, C52 and C54 contents. Thus a markedly improved spreadability of the resulting butter might be expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号