首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
提出智能优化支持向量机算法来提高模型的预测能力和泛化能力。该算法针对支持向量机噪声敏感问题采用小波方法对数据集去噪;利用核主成分分析方法提取数据特征;采用量子粒子群算法优化支持向量机超参数。将该优化算法应用于锅炉负荷短期预测,实验结果表明,该优化算法预测精度较高,收敛速度较快,泛化性能优于其他预测方法,且工程实现容易。  相似文献   

2.
SVM处理大样本问题时性能明显不如神经网络,因此笔者利用矩阵变换进行决策函数的简化来提升SVM的训练速度,对SVM建模时非必需的支持向量进行约简,并引入一个松弛变量来提升约简效果.实验证明,约简后支持向量个数减少三分之一以上.SVM所建立的模型进行线性化之后应用于预测控制当中,采用PSO算法来选择最优的SVM参数和计算预测控制的最优控制律.通过对水泥回转窑窑尾烟室温度的数据进行实验仿真,结果表明该方法可以提高系统响应速度,减小系统响应的超调量.  相似文献   

3.
冲击地压危险等级预测的PSO-SVM模型   总被引:1,自引:0,他引:1  
为了对冲击地压进行有效的预测,分析了冲击地压的主要影响因素,建立了基于粒子群优化支持向量机方法(PSO-SVM)的冲击地压危险程度预测模型,并通过实例,对PSO-SVM模型的预测效果进行了检验,同时还分别采用了BP神经网络(BP-NN)和支持向量机方法(SVM)对实例进行了预测,最后对三种方法的预测精度进行了比较分析,结果显示:PSO-SVM方法的预测精度要高于BP-NN和SVM方法的预测精度,可见,PSO-SVM预测方法对煤矿冲击地压危险程度预测具有一定的参考价值和指导意义.  相似文献   

4.
模糊支持向量机在径流预测中的应用   总被引:2,自引:0,他引:2  
在分析现有径流预测模型局限性的基础上,考虑径流量随时间变化的不确定因素,建立了基于模糊支持向昔机的径流预测模型,使得较近时间的径流数据与较远时间的径流数据相比,对预测精度的提高影响更大.将该模型应用于新疆伊犁河雅码渡站年径流预测中,与传统的支持向量机预测模型比较表明,模糊支持向量机预测精度有较大的提高,并能进一步在其他流域径流预测中推广应用.  相似文献   

5.
在分析现有径流预测模型局限性的基础上,考虑径流量随时间变化的不确定因素,建立了基于模糊支持向量机的径流预测模型,使得较近时间的径流数据与较远时间的径流数据相比,对预测精度的提高影响更大.将该模型应用于新疆伊犁河雅马渡站年径流预测中,与传统的支持向量机预测模型比较表明,模糊支持向量机预测精度有较大的提高,并能进一步在其他流域径流预测中推广应用.  相似文献   

6.
PSO-SVM模型的构建与应用   总被引:3,自引:0,他引:3  
为了使支持向量机(SVM)获得更好的分类效果,针对人为选择参数的随机性,提出了利用粒子群算法(PSO)进行参数自动选取的优化方法,构建了PSO-SVM模型.在个人信用评估中,通过对粒子适应度函数的设置来控制造成较大损失的第二类误判,应用结果表明:模型在训练和测试样本中的分类精度可以达到95%,第二类误判率分别仅为0.78%和2.02%.利用PSO对SVM中的参数进行优化,可以避免人为选择的随机性,并且在解决分类问题中表现出较好的稳健性.  相似文献   

7.
网络安全态势预测精度不足,导致主动防御不及时。本文提出一种基于模拟退火与高斯扰动的粒子群算法(SAGPSO)与支持向量机(SVM)结合的预测模型,首先在传统粒子群(PSO)算法基础上引入模拟退火的思想,避免局部极值,对较优个体进行高斯扰动,然后利用该算法的全局收敛性强、收敛速度快和精确度高的特点对SVM参数进行优化,最后运用获取的模型参数进行预测,从而提高预测精度,并将此模型的预测结果与PSO-SVM和SAPSO-SVM预测模型的预测结果进行对比。结果表明,SAGPSO-SVM是一个预测精度高而且能够更加准确的描述网络安全态势变化趋势的预测模型。  相似文献   

8.
针对间歇式活性污泥法(SBR)复杂非线性等问题,常规神经网络建立的出水水质模型性能精度不高。采用支持向量机建立生化需氧量(BOD)软测量模型,并通过粒子群算法弥补支持向量机模型参数的不足。仿真结果表明,相对于BP神经网络、标准SVM模型,PSO-LIBSVM模型的误差小、精度高,降低了模型的复杂度并提高了其泛化能力,能达到较好的预测效果  相似文献   

9.
准确预测弹丸参数变化时的侵彻效果,对作战效果评估和战斗部设计都具有重要作用.针对当前方法存在的问题,提出了一种基于粒子群优化支持向量机算法的动能弹侵彻混凝土靶的侵彻效果预测方法.通过对训练样本的学习,在支持向量机中可以形成输入量到输出量之间的智能映射关系,完成训练后的支持向量机根据新的输入量可以解算出对应的侵彻深度.为了获得更好的预测效果,使用粒子群优化算法改进了支持向量机的结构参数.最后进行了预测测试,结果表明本文方法的相对预测误差为4%,可以满足工程需要.  相似文献   

10.
针对基于经验风险最小化的神经网络存在模型结构较难确定和过学习的问题,根据时用水序列具有周期性和趋势性的特点,建立了基于支持向量机的时用水量预测模型.支持向量机采用结构风险最小化准则,在最小化学习误差的同时缩小模型泛化误差的上界,因此具有较强的泛化能力.此外,支持向量机通过将机器学习问题转化为二次规划问题,可获得全局最优解.实例分析结果表明,与基于BP网络的预测模型相比,基于支持向量机的时用水量预测模型建模速度更快,预测精度更高.  相似文献   

11.
为了对人参价格进行预测,分析了影响人参价格因素,通过K-fold交叉验证方法,利用粒子群算法对支持向量机的惩罚参数c和ggamma值进行寻优,建立起2010年1月~2011年12月林下参的价格预测模型。利用粒子群算法优化惩罚参数c为3.6974,利用radial basis function核函数的SVM(Support Vector Machine)对预测集1的预测相关系数为97.316%。  相似文献   

12.
利用粒子群优化算法的全局搜索功能,进化设计神经网络的网络结构与连接权,得到一组独立的神经网络集成个体.利用主成份分析法提取其综合信息,再用支持向量机回归方法对其处理,生成神经网络的输出结果,以此建立股市预测模型.通过实例验证,该方法能有效提高神经网络集成的泛化能力,模型的预测精度高、稳定性好、具有应用推广前景.  相似文献   

13.
为了克服瓦斯涌出量预测传统模型存在泛化能力弱和预测精度低的缺点,基于改进粒子群优化支持向量机建立一种非线性的煤矿瓦斯涌出量预测新模型。用改进的粒子群优化算法对支持向量机的惩罚因子与核参数进行寻优,选取最佳参数,以最佳参数对给定的训练样本进行学习训练,得到系统输入输出之间依赖关系的估计,再由这种关系对未知输出做出预测,进而建立起新型支持向量机预测模型。仿真实验结果显示,与普通粒子群优化的支持向量机相比,改进算法可使预测值的最大误差降低3.86%,平均误差降低4.27%,即新模型能够克服传统预测模型人为选取参数的盲目性以及神经网络的过学习问题,从而提高瓦斯涌出量预测的精度。  相似文献   

14.
为了加快粒子群优化算法的收敛速度,增强全局的搜索能力,通过对粒子群优化算法中惯性权重和全局最优值的分析,提出了一种根据迭代次数而自适应变化的惯性权重的粒子群优化方法。改进后的粒子群算法在防止陷入局部最优的能力方面有了明显的增强,同时,给出了应用粒子群优化算法训练支持向量机的方法,并将其应用于说话人识别。实验结果证实了在说话人识别中改进PSO-SVM方法比其他传统方法能获得更好的识别精度和识别速度。  相似文献   

15.
Slope stability estimation is an engineering problem that involves several parameters. To address these problems, a hybrid model based on the combination of support vector machine(SVM) and particle swarm optimization(PSO) is proposed in this study to improve the forecasting performance. PSO was employed in selecting the appropriate SVM parameters to enhance the forecasting accuracy. Several important parameters, including the magnitude of unit weight, cohesion, angle of internal friction, slope angle, height, pore water pressure coefficient, were used as the input parameters, while the status of slope was the output parameter. The results show that the PSO-SVM is a powerful computational tool that can be used to predict the slope stability.  相似文献   

16.
针对异常声音识别率低和算法复杂度高等技术难题,提出了一种基于粒子群优化粒子滤波(PSO-PF)算法优化支持向量机(SVM)的识别方法.将PSO算法引入粒子滤波中,通过不断更新粒子速度和位置,使粒子群向高似然后验概率区域移动,提高粒子滤波的参数估计精度.将PSO-PF算法应用于SVM参数优化中,可解决现有SVM参数优化算法易陷入局部最优值等问题.实验结果表明,将所提方法应用于多类异常声音识别,能够有效提高识别率,降低算法复杂度.  相似文献   

17.
A forecasting system of patent application counts is studied in this paper. The optimization model proposed in the research is based on support vector machines (SVM), in which cross-validation algorithm is used for preferences selection. R esults of data simulation show that the proposed method has higher forecasting p recision power and stronger generalization abi1ity than BP neural network and RB F neural network. In addition, it is feasible and effective in forecasting paten t application counts.  相似文献   

18.
一种基于SVM的快速特征选择方法   总被引:2,自引:0,他引:2  
针对现有特征选择方法计算量大、速度慢的缺点,提出了一种基于SVM的快速特征选择算法。该算法使用SVM作为分类器,并利用粒子群优化算法进行搜索。通过利用SVM线性核与多项式核函数的特性,减少了在特征选择中训练分类器的次数,降低了计算复杂度。实验结果表明在不损失分类精度的情况下,能显著提高特征选择的速度。  相似文献   

19.
基于EEG的驾驶持续性注意水平PSO-SVM识别模型   总被引:1,自引:0,他引:1  
为了对驾驶持续性注意水平予以有效识别,基于脑电(EEG)信号特征指标构建了一种持续性注意水平识别方法.以驾驶行为绩效为客观测评指标,提出了一种驾驶持续性注意水平等级划分方法.在此基础上,选取驾驶员EEG波段(θ(4~8 Hz)、α(8~13 Hz)、β(13~30 Hz))的频谱幅值及其组合指标(α+β)/βα/β、(θ+α)/(α+β)、θ/β、(α+β)/θ作为特征指标,将粒子群优化(PSO)算法与支持向量机(SVM)相结合,构建了驾驶持续性注意水平识别算法.最后,基于驾驶模拟器实验数据对该模型予以试算.结果表明模型识别平均正确率可达93.02%.该方法可用于对驾驶员持续性注意水平的识别.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号