首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The expression of the human cytomegalovirus (HCMV) UL97 open reading frame in infected or transfected cells in the presence of the antiherpes compound ganciclovir (GCV) results in the intracellular phosphorylation of GCV. There are conventional kinase domains within the UL97-encoded protein (pUL97). However, the role of pUL97 in the HCMV replication cycle, and the mechanism by which it causes phosphorylation of GCV, are currently unknown. Herein, the biosynthesis and biogenesis of pUL97 was studied in HCMV-infected cells. pUL97 is expressed with early-late kinetics and is posttranslationally modified by phosphorylation. This phosphorylation occurs within 1 hr after synthesis, affects the electrophoretic mobility of pUL97, and is independent of the presence of other HCMV proteins. pUL97 was localized to the nucleus of infected cells and found in the HCMV virions. Thus, pUL97 is a virion phosphoprotein, and a likely tegument component.  相似文献   

2.
3.
2,5,6-Trichloro-1-beta-D-ribofuranosyl benzimidazole (TCRB) is a potent and selective inhibitor of human cytomegalovirus (HCMV) replication. TCRB acts via a novel mechanism involving inhibition of viral DNA processing and packaging. Resistance to the 2-bromo analog (BDCRB) has been mapped to the UL89 open reading frame (ORF), and this gene product was proposed as the viral target of the benzimidazole nucleosides. In this study, we report the independent isolation of virus that is 20- to 30-fold resistant to TCRB (isolate C4) and the characterization of the virus. The six ORFs known to be essential for viral DNA cleavage and packaging (UL51, UL52, UL56, UL77, UL89, and UL104) were sequenced from wild-type HCMV, strain Towne, and from isolate C4. Mutations were identified in UL89 (D344E) and in UL56 (Q204R). The mutation in UL89 was identical to that previously reported for virus resistant to BDCRB, but the mutation in UL56 is novel. Marker transfer analysis demonstrated that each of these mutations individually caused approximately 10-fold resistance to the benzimidazoles and that the combination of both mutations caused approximately 30-fold resistance. The rate and extent of replication of the mutants was the same as for wild-type virus, but the viruses were less sensitive to inhibition of DNA cleavage by TCRB. Mapping of resistance to UL56 supports and extends recent work showing that UL56 codes for a packaging motif binding protein which also has specific nuclease activity (E. Bogner et al., J. Virol. 72:2259-2264, 1998). Resistance which maps to two different genes suggests that their putative proteins interact and/or that either or both have a benzimidazole ribonucleoside binding site. The results also suggest that the gene products of UL89 and UL56 may be antiviral drug targets.  相似文献   

4.
In cell culture, cidofovir (CDV) was used to select a human cytomegalovirus (HCMV) strain with decreased drug susceptibility. The genotypic characterization of this virus revealed a single base substitution resulting in a K513N amino acid alteration in the viral DNA polymerase (UL54). Performed in parallel, the selection of HCMV for replication in the presence of ganciclovir (GCV) selected an M460V substitution in the phosphotransferase (UL97), as well as a K513N/V812L double substitution in DNA polymerase. Neither of the two DNA polymerase mutations has been previously identified in HCMV drug-resistant strains. To precisely elucidate their role in drug resistance, corresponding recombinant mutant viruses were generated by recombination of nine overlapping viral DNA fragments. The K513N recombinant virus showed 13- and 6.5-fold decreased susceptibility to CDV and GCV in vitro, respectively, compared with the wild-type recombinant virus. Mutation V812L was associated with a moderate (2-3-fold) decrease in susceptibility to CDV, GCV, foscarnet, and adefovir. A multiplicative interaction of the K513N and V812L mutations with regard to the profile and level of drug resistance was demonstrated in recombinant virus expressing both mutations. In vitro replication kinetic experiments revealed that the K513N mutation significantly decreased HCMV replication capacity. Consistent with this finding, the K513N mutant DNA polymerase exhibited reduced specific activity in comparison with the wild-type enzyme and was severely impaired in its 3'-5' exonuclease function. Unexpectedly, the K513N mutant enzyme showed no decrease in susceptibility to CDV-diphosphate or GCV-triphosphate. However, the K513N mutation decreased the susceptibility to CDV and GCV of the oriLyt plasmid replication in the transient transfection/infection assay, suggesting that the DNA replication of the K513N mutant virus is less sensitive to the corresponding inhibitors.  相似文献   

5.
Human cytomegalovirus (HCMV) pp65 protein is the major constituent of viral dense bodies but is dispensable for viral growth in vitro. pp65 copurifies with a S/T kinase activity and has been implicated in phosphorylation of HCMV IE1 immediate-early protein and its escape from major histocompatibility complex 1 presentation. Furthermore, the presence of pp65 correlates with a virion-associated kinase activity. To clarify the role of pp65, yeast two-hybrid system (THS) screening was performed to identify pp65 cellular partners. A total of 18 out of 48 yeast clones harboring cDNAs for putative pp65 binding proteins encoded the Polo-like kinase 1 (Plk1) C-terminal domain. Plk1 behaved as a bona fide pp65 partner in THS control crosses, and the interaction was confirmed by in vitro binding experiments. Endogenous Plk1 was coimmunoprecipitated with pp65 from transiently transfected COS7 cells. In infected fibroblasts, Plk1 was coimmunoprecipitated with pp65 at late infection stages. Furthermore, Plk1 was detected within wild-type HCMV particles but not within the particles of a pp65-negative mutant (RVAd65). The hydrophilic region of pp65 was phosphorylated in vitro by Plk1. These results suggest that one function of pp65 may be to capture a cell kinase, perhaps in order to alter its activity, nucleotide preference, substrate specificity, or subcellular localization to the advantage of HCMV.  相似文献   

6.
7.
The human cytomegalovirus (HCMV) DNA polymerase gene (UL54; also called pol) is a prototypical early gene in that expression is mandatory for viral DNA replication. Recently, we have identified the major regulatory element in the UL54 promoter responsive to the major immediate early (MIE) proteins (UL122 and UL123) (J.A. Kerry, M.A. Priddy, and R. M. Stenberg, J. Virol. 68:4167-4176, 1994). Mutation of this element, inverted repeat sequence 1 (IR1), abrogates binding of cellular proteins to the UL54 promoter and reduces promoter activity in response to viral proteins in transient-transfection assays. To extend our studies on the UL54 promoter, we aimed to examine the role of IR1 in UL54 regulation throughout the course of infection. These studies show that viral proteins in addition to the MIE proteins can activate the UL54 promoter. Proteins from UL112-113 and IRS1/TRS1, recently identified as essential loci for transient complementation of HCMV oriLyt-dependent DNA replication, were found to function as transactivators of the UL54 promoter in association with MIE proteins. UL112-113 enhanced UL54 promoter activation by MIE proteins three- to fourfold. Constitutive expression of UL112-113 demonstrated that the MIE protein dependence of UL112-113 transactivational activity was not related to activation of cognate promoter sequences, suggesting that UL112-113 proteins function in cooperation with the MIE proteins. Mutation of IR1 was found to abrogate stimulation of the UL54 promoter by UL112-113, suggesting that this element is also involved in UL112-113 stimulatory activity. These results demonstrate that additional viral proteins influence UL54 promoter expression in transient-transfection assays via the IR1 element. To confirm the biological relevance of IR1 in regulating UL54 promoter activity during viral infection, a recombinant virus construct containing the UL54 promoter with a mutated IR1 element regulating expression of the chloramphenicol acetyltransferase (CAT) reporter gene (RVIRmCAT) was generated. Analysis of RVIRmCAT revealed that mutation of IR1 dramatically reduces UL54 promoter activity at early times after infection. However, at late times after infection CAT expression by RVIRmCAT, as assessed by RNA and protein levels, was approximately equivalent to expression by wild-type RVpolCAT. These data demonstrate IR1-independent regulation of the UL54 promoter at late times after infection. Together these results show that multiple regulatory events affect UL54 promoter expression during the course of infection.  相似文献   

8.
The vpr gene product of human immunodeficiency virus type 1 (HIV-1) is a virion-associated protein that is essential for efficient viral replication in monocytes/macrophages. Vpr is primarily localized in the nucleus when expressed in the absence of other viral proteins. Vpr is packaged efficiently into viral particles through interactions with the p6 domain of the Gag precursor polyprotein p55gag. We developed a panel of expression vectors encoding Vpr molecules mutated in the amino-terminal helical domain, leucine-isoleucine (LR) domain, and carboxy-terminal domain to map the different functional domains and to define the interrelationships between virion incorporation, nuclear localization, cell cycle arrest, and differentiation functions of Vpr. We observed that substitution mutations in the N-terminal domain of Vpr impaired both nuclear localization and virion packaging, suggesting that the helical structure may play a vital role in modulating both of these biological properties. The LR domain was found to be involved in the nuclear localization of Vpr. In contrast, cell cycle arrest appears to be largely controlled by the C-terminal domain of Vpr. The LR and C-terminal domains do not appear to be essential for virion incorporation of Vpr. Interestingly, we found that two Vpr mutants harboring single amino acid substitutions (A30L and G75A) retained the ability to translocate to the nucleus but were impaired in the cell cycle arrest function. In contrast, mutation of Leu68 to Ser resulted in a protein that localizes in the cytoplasm while retaining the ability to arrest host cell proliferation. We speculate that the nuclear localization and cell cycle arrest functions of Vpr are not interrelated and that these functions are mediated by separable putative functional domains of Vpr.  相似文献   

9.
10.
Studies were initiated to determine whether rhesus cytomegalovirus (RhCMV)-infected macaques could serve as an animal model for evaluating anti-CMV compounds, as macaques have a naturally occurring CMV that is similar to human CMV (HCMV). Utilizing plaque reduction assays, RhCMV was tested to anti-viral susceptibility. By these assays. RhCMV displayed anti-viral susceptibility to ganciclovir at a 50% effective dose (ED50) of 0.8 microM, acyclovir at an ED50 of 15 microM, and foscarnet at an ED50 of 250 microM. By Southern blot analysis with HCMV-UL97 (phosphotransferase) and DNA polymerase (pol) genes as probes, we isolated viral DNA fragments that strongly hybridized. DNA sequence analysis of these DNA fragments revealed two open reading frames with homology to HCMV UL97 and DNA polymerase. Steady-state RNA analysis revealed that the RhCMV UL97 homologue and pol genes are transcribed as early late and early genes, respectively. Comparison against HCMV showed the RhCMV UL97 homologue exhibits 54.4% amino acid (aa) sequence identity to HCMV UL97 and the RhCMV DNA polymerase 59.2% aa sequence identity to HCMV DNA polymerase. Results from anti-viral assays and molecular characterization of these two viral genes suggest that RhCMV-infected rhesus macaques should serve as an excellent animal model for evaluating future anti-CMV compounds.  相似文献   

11.
The role of phosphorylation in the dissociation of structural components of the herpes simplex virus type 1 (HSV-1) tegument was investigated, using an in vitro assay. Addition of physiological concentrations of ATP and magnesium to wild-type virions in the presence of detergent promoted the release of VP13/14 and VP22. VP1/2 and the UL13 protein kinase were not significantly solubilized. However, using a virus with an inactivated UL13 protein, we found that the release of VP22 was severely impaired. Addition of casein kinase II (CKII) to UL13 mutant virions promoted VP22 release. Heat inactivation of virions or addition of phosphatase inhibited the release of both proteins. Incorporation of radiolabeled ATP into the assay demonstrated the phosphorylation of VP1/2, VP13/14, VP16, and VP22. Incubation of detergent-purified, heat-inactivated capsid-tegument with recombinant kinases showed VP1/2 phosphorylation by CKII, VP13/14 phosphorylation by CKII, protein kinase A (PKA), and PKC, VP16 phosphorylation by PKA, and VP22 phosphorylation by CKII and PKC. Proteolytic mapping and phosphoamino acid analysis of phosphorylated VP22 correlated with previously published work. The phosphorylation of virion-associated VP13/14, VP16, and VP22 was demonstrated in cells infected in the presence of cycloheximide. Use of equine herpesvirus 1 in the in vitro release assay resulted in the enhanced release of VP10, the homolog of HSV-1 VP13/14. These results suggest that the dissociation of major tegument proteins from alphaherpesvirus virions in infected cells may be initiated by phosphorylation events mediated by both virion-associated and cellular kinases.  相似文献   

12.
The virion host shutoff (vhs) function of herpes simplex virus induces degradation of host mRNAs at early times and rapid turnover of viral mRNAs throughout infection. Previous studies have shown that disruption of the UL41 gene abrogates vhs activity, but have not determined whether the UL41 polypeptide is the direct inducer of mRNA degradation or whether it is the only virion component required for this activity. In this paper we report that transfection of cells with UL41 inhibits expression of a cotransfected CAT reporter gene and that the inhibition is not dependent upon other viral genes. Inhibition of CAT expression was due to UL41-dependent reduction of CAT mRNA levels. UL41 alleles encoding polypeptides that lacked vhs activity during virus infections exhibited a similar lack of activity in transfected cells. The results indicate that the UL41 polypeptide is the direct inducer of host mRNA degradation following virus infection and that it is the only virion component directly required for this activity. A 382-amino-acid nonsense polypeptide missing the last 107 residues of UL41 lacked inhibitory activity, but was packaged into virions, while a 343-amino-acid nonsense polypeptide lacked both inhibitory activity and the ability to be packaged.  相似文献   

13.
The sequence of a 20.15 kb region from human herpesvirus 6 variant B (HHV-6B) strain Z29 is described (GenBank accession number L14772). Determinations of protein homologies for seventeen predicted gene products revealed HHV-6B homologs of six proteins well-conserved both in genetic context and amino acid sequence throughout the alpha-, beta-, and gammaherpesvirus subfamilies. These include proteins involved in viral DNA replication, packaging and nucleotide metabolism, and conserved proteins of undefined function. The close evolutionary relationship of the human betaherpesviruses, HHV-6B, HHV-6A, HHV-7 and human cytomegalovirus (HCMV) was confirmed by identification of several protein sequences encoded only by these viruses, including homologs of the HCMV early phosphoprotein family and a series of HCMV open reading frames predicted to encode glycoprotein exons. Homologs of essential HSV-1 replication proteins, UL8 and UL9, were also identified. Downstream from the conserved replication locus, each betaherpesvirus contains a region of divergent, small open reading frames. The evolution of this region and its potential use in the development of a viral vector system are discussed.  相似文献   

14.
The nef gene of primate immunodeficiency viruses is essential for high-titer virus replication and AIDS pathogenesis in vivo. In tissue culture, Nef is not required for human immunodeficiency virus (HIV) infection but enhances viral infectivity. We and others have shown that Nef is incorporated into HIV-1 particles and cleaved by the viral proteinase. To determine the signal for Nef incorporation and to analyze whether virion-associated Nef is responsible for enhancement of infectivity, we generated a panel of nef mutants and analyzed them for virion incorporation of Nef and for their relative infectivities. We report that N-terminal truncations of Nef abolished its incorporation into HIV particles. Incorporation was reconstituted by targeting the respective proteins to the plasma membrane by using a heterologous signal. Mutational analysis revealed that both myristoylation and an N-terminal cluster of basic amino acids were required for virion incorporation and for plasma membrane targeting of Nef. Grafting the N-terminal anchor domain of Nef onto the green fluorescent protein led to membrane targeting and virion incorporation of the resulting fusion protein. These results indicate that Nef incorporation into HIV-1 particles is mediated by plasma membrane targeting via an N-terminal bipartite signal which is reminiscent of a Src homology region 4. Virion incorporation of Nef correlated with enhanced infectivity of the respective viruses in a single-round replication assay. However, the phenotypes of HIV mutants with reduced Nef incorporation only partly correlated with their ability to replicate in primary lymphocytes, indicating that additional or different mechanisms may be involved in this system.  相似文献   

15.
The entry of the viral genomic DNA of cauliflower mosaic virus into the nucleus is a critical step of viral infection. We have shown by transient expression in plant protoplasts that the viral coat protein (CP), which is processed from the product of open reading frame IV, contains an N-terminal nuclear localization signal (NLS). The NLS is exposed on the surface of the virion and is thus available for interaction with a putative NLS receptor. Phosphorylation of the matured CP did not influence the nuclear localization of the protein but improved protein stability. Mutation of the NLS completely abolished viral infectivity, thus indicating its importance in the virus life cycle. The NLS seems to be regulated by the N terminus of the precapsid, which inhibits its nuclear targeting. This regulation could be important in allowing virus assembly in the cytoplasm.  相似文献   

16.
The herpes simplex virus type 1 (HSV-1) UL25 gene contains a 580-amino-acid open reading frame that codes for an essential protein. Previous studies have shown that the UL25 gene product is a virion component (M. A. Ali et al., Virology 216:278-283, 1996) involved in virus penetration and capsid assembly (C. Addison et al., Virology 138:246-259, 1984). In this study, we describe the isolation of a UL25 mutant (KUL25NS) that was constructed by insertion of an in-frame stop codon in the UL25 open reading frame and propagated on a complementing cell line. Although the mutant was capable of synthesis of viral DNA, it did not form plaques or produce infectious virus in noncomplementing cells. Antibodies specific for the UL25 protein were used to demonstrate that KUL25NS-infected Vero cells did not express the UL25 protein. Western immunoblotting showed that the UL25 protein was associated with purified, wild-type HSV A, B, and C capsids. Transmission electron microscopy indicated that the nucleus of Vero cells infected with KUL25NS contained large numbers of both A and B capsids but no C capsids. Analysis of infected cells by sucrose gradient sedimentation analysis confirmed that the ratio of A to B capsids was elevated in KUL25NS-infected Vero cells. Following restriction enzyme digestion, specific terminal fragments were observed in DNA isolated from KUL25NS-infected Vero cells, indicating that the UL25 gene was not required for cleavage of replicated viral DNA. The latter result was confirmed by pulsed-field gel electrophoresis (PFGE), which showed the presence of genome-size viral DNA in KUL25NS-infected Vero cells. DNase I treatment prior to PFGE demonstrated that monomeric HSV DNA was not packaged in the absence of the UL25 protein. Our results indicate that the product of the UL25 gene is required for packaging but not cleavage of replicated viral DNA.  相似文献   

17.
Infection of macrophages with human cytomegalovirus (HCMV) has been shown to be nonlytic and exclusively cell associated. Human T cell leukemia-lymphoma virus type I (HTLV-I) is capable of establishing productive infection in macrophages. We studied the interactions between HCMV and HTLV-I in monocyte-derived macrophages cultured in vitro. We found that coinfection of macrophages with HCMV and HTLV-I significantly enhanced HCMV replication, resulting in release of infectious HCMV from dually infected cells. On the other hand, HCMV inhibited HTLV-I replication in macrophages coinfected with both viruses. Reciprocal interactions between HCMV and HTLV-I were mediated by their trans-acting proteins. Results of transfection studies demonstrated that the tax gene product of HTLV-I alone was capable of upregulating HCMV production. In a transient gene expression assay the immediate-early 2 (IE2) protein of HCMV alone could inhibit HTLV-I replication, whereas the IE1 protein, which had no effect by itself, produced a synergistic inhibitory effect together with the IE2 protein. Results from this study suggest that in vivo double infection of macrophages with HCMV and HTLV-I may contribute to the dissemination of HCMV infection in patients suffering from HTLV-I-associated T cell leukemia-lymphoma.  相似文献   

18.
Although the product of the UL12 gene of herpes simplex virus type 1 (HSV-1) has been shown to possess both exonuclease and endonuclease activities in vitro, and deletion of most of the gene within the viral genome results in inefficient production and maturation of infectious virions, the function of the deoxyribonuclease (DNase) activity per se in virus replication remains unclear. In order to correlate the in vitro and in vivo activities of the protein encoded by UL12, mutant proteins were tested for nuclease activity in vitro by a novel hypersensitivity cleavage assay and for their ability to complement the replication of a DNase null mutant, AN-1. Rabbit reticulocyte lysates programmed with wild-type UL12 RNA cleaved at the same sites cleaved by purified HSV-1 DNase, but distinct from those cleaved by DNase 1 or micrococcal nuclease. All mutants which lacked DNase activity in vitro also failed to complement the replication of AN-1 in nonpermissive cells. Likewise, all mutants which contained HSV-1 DNase activity, as detected by the hypersensitivity cleavage assay, were capable of complementing the replication of the DNase null mutant, though to varying extents. Of particular note was the d1-126 mutant protein, which, despite having the same specific activity as the wild-type enzyme in vitro, complemented the replication of AN-1 significantly less than the wild-type protein. The results suggest that DNase activity per se is required for efficient replication of HSV-1 in vivo. However, residues, including the N-terminal 126 amino acids, which are dispensable for enzymatic activity in vitro may facilitate the accessibility or activity of the protein in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号