首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee SH  Shim HS  Kim CK  Yoo JH  Russo RE  Jeong S 《Applied optics》2012,51(7):B115-B120
Laser induced breakdown spectroscopy (LIBS) was applied for the elemental analysis of the thin copper indium gallium diselenide (CuIn(1-x)Ga(x)Se(2) [CIGS]) absorption layer deposited on Mo-coated soda-lime glass by the co-evaporation technique. The optimal laser and detection parameters for LIBS measurement of the CIGS absorption layer (1.23 μm) were investigated. The calibration results of Ga/In ratio with respect to the concentration ratios measured by x-ray fluorescence and inductively coupled plasma optical emission spectroscopy showed good linearity.  相似文献   

2.
Binary stacked In2Se3/CuSe precursors were prepared onto substrates with different types of sodium (Na) sources, i.e., soda-lime glass (SLG), sodium-free glass (SFG), SFG with Na-doped Mo layers (Mo:Na), in a co-evaporation system. SIMS depth profiles for In2Se3 precursors deposited at 400 °C demonstrated that the different amounts of Na diffused out of each Na source. High-temperature XRD experiments revealed that there was no significant effect of Na on the reaction path of CuInSe2 formation from In2Se3/CuSe stacked precursor. The reaction rate of the precursor without Na (i.e., SFG/Mo/In2Se3/CuSe) was found to be higher than that of those with Na (i.e., SLG/Mo/In2Se3/CuSe and SFG/Mo:Na(750 nm)/Mo/In2Se3/CuSe).  相似文献   

3.
We have prepared Cu(In,Ga)S2 films at growth temperatures from 300 °C to 580 °C with a homogeneous gallium depth distribution (estimated band gap 1.67 eV) onto soda lime glass (SLG) substrates with one of three different kinds of back contact: Mo(1000 nm), ZnO(500 nm), and Mo(30 nm)/ZnO(500 nm), respectively. We have also investigated the depth profiles of Zn and Na (diffused from SLG) in Cu(In,Ga)S2 films by secondary ion mass spectroscopy (SIMS). The efficiency of solar cells on Mo increases with increasing growth temperature. It is higher on Mo/ZnO than on ZnO, and increases from 350 °C to 450 °C, then decreases above 450 °C. It was observed by SIMS that the amount of Zn in Cu(In,Ga)S2 on Mo/ZnO is lower than it is on ZnO up to 450 °C, and a large amount of Zn diffuses into absorbers over 450 °C, which contributes to decreasing efficiency. The amount of Na in the back contact increases with growth temperature. The depth distribution of Na in Cu(In,Ga)S2 films on Mo is almost constant in the order of 1017-1018 cm− 3, on ZnO and Mo/ZnO the Na concentration increases towards the surface and is in the range of 1015-1017 cm− 3.  相似文献   

4.
Freestanding ultrananocrystalline diamond (UNCD) films with homojunction insulating layer in situ grown on a conducting layer showed superior electron field emission (EFE) properties. The insulating layer of the films contains large dendrite type grains (400-600 nm in size), whereas the conducting layer contains nanosize equi-axed grains (5-20 nm in size) separated by grain boundaries of about 0.5-1 nm in width. The conducting layer possesses n-type (or semimetallic) conductivity of about 5.6 × 10(-3) (Ω cm)(-1), with sheet carrier concentration of about 1.4 × 10(12) cm(-2), which is ascribed to in situ doping of Li-species from LiNbO(3) substrates during growth of the films. The conducting layer intimately contacts the bottom electrodes (Cu-foil) by without forming the Schottky barrier, form homojunction with the insulating layer that facilitates injection of electrons into conduction band of diamond, and readily field emitted at low applied field. The EFE of freestanding UNCD films could be turned on at a low field of E(0) = 10.0 V/μm, attaining EFE current density of 0.2 mA/cm(2) at an applied field of 18.0 V/μm, which is superior to the EFE properties of UNCD films grown on Si substrates with the same chemical vapor deposition (CVD) process. Such an observation reveals the importance in the formation of homojunction on enhancing the EFE properties of materials. The large grain granular structure of the freestanding UNCD films is more robust against harsh environment and shows high potential toward diamond based electronic applications.  相似文献   

5.
Orzi DJ  Bilmes GM 《Applied spectroscopy》2004,58(12):1475-1480
Laser-induced breakdown spectroscopy (LIBS) was used for the characterization of the main components of the surface residual dirt produced in cold-rolled steel plates as a consequence of the manufacturing stages. At laser fluences between 0.05 J/cm(2) < F < 0.30 J/cm(2), dirt ablation takes place without any contribution from the substrate. Results show that the main components of the dirt are fine particles of Fe mostly homogeneously distributed in a thin layer of grease and soaps. In the primary stages of the manufacturing process carbon residuals can also be found. By measuring light emission from the lambda = 495.9 nm line of Fe(I) after laser ablation, we developed a real-time on-line method for the determination of the concentration of iron particles present in the surface dirt. The obtained results open new possibilities in the design of real-time instruments for industrial applications as a quality control of products and processes.  相似文献   

6.
在硅酸盐光学玻璃基片上制作了光波导堆栈, 这种光波导堆栈通过Ag+/Na+熔盐离子交换和电场辅助离子扩散技术顺次制作了两层掩埋式光波导. 对光波导堆栈的横截面显微结构进行了观察, 并对堆栈中两层波导的损耗特性进行了测试. 所获得的光波导堆栈中的上、下两层波导芯部分别位于玻璃表面以下14和35 μm处; 上层光波导芯部尺寸约为12 μm×7 μm; 下层光波导芯部尺寸约为9 μm×8 μm. 通光测试显示两层波导在1.55 μm工作波长下均为单模光波导, 且两者之间没有相互耦合. 损耗测试分析结果显示: 堆栈中两层光波导的传输损耗均约为0.12 dB/cm,与单模光纤之间的耦合损耗分别为0.78和0.73 dB. 分析表明, 这种光波导堆栈在玻璃基集成光芯片的高密度集成方面具有很好的应用前景.  相似文献   

7.
The photovoltaic properties of CIGS cells on an alumina substrate were improved through the use of Na-doped Mo as the bottom layer of a Mo back contact. Na was supplied to the CIGS bulk region from an alumina/Na-doped Mo/Mo structure, similar to the Na diffusion from soda-lime glass. The diffusion of Na from the Na-doped Mo was controlled effectively compared to that from Soda-lime glass (SLG). The present results indicate that Na-doped Mo acts as a Na source material and that the Na amount can be controlled by adjustment of thickness of Na-doped Mo layer, without the use of an alkali barrier layer. The highest conversion efficiency of 13.34% (Jsc = 34.62 mA/cm2, Voc = 0.58 V and FF = 66%) for an active area of 0.45 cm2 on an alumina substrate was obtained for 100 nm Na-doped Mo/1000 nm Mo.  相似文献   

8.
Arc ablation threatens the cathode operating time and restricts the development of high-power arc heaters. Surface modification is an effective strategy in improving cathode ablation resistance without reducing matrix conductivities. Herein, Nb layer and Ti layer are laser clad on Cu matrix to decrease the arc ablation of Cu cathode. The total thickness of laser-clad Nb/Ti layer reaches 1850 μm. The Nb layer restrains Cu from diluting into surface cladding and no detrimental Ti–Cu intermetallic is formed. The surface Ti content is as high as 98.34 at%, guaranteeing the arc discharge homogeneity. The arc ablation behaviors of Ti/Nb/Cu cathodes are investigated in air atmosphere. The layered cathode discharges and ablates homogeneously. The arc discharge center is shallow with no appearance of deep pits or craters. The maximum ablation depth (72.1 μm) after 30 s discharging is ≈33.4% lower than that of Cu cathode. Besides, the cathode ablation rate, 1.61 μg C−1, is ≈27.5% lower than Cu cathode. The improved arc ablation resistance is interpreted in the protective effect of refractory TiO2 layer formed during air arc discharging.  相似文献   

9.
We emphasize two points: (l) the properties and mechanisms of very low-fluence ablation of copper surfaces and (2) the sensitivity and selectivity of resonant laser ablation (RLA). We present results for ablation of bulk copper and copper thin films; spot-size effects; the effects of surface-sample preparation and beam polarization; and an accurate measurement of material removal rates, typically ≤ 10(-3) ? at 35 mJ/cm(2). Velocity distributions were Maxwellian, with peak velocities ≈ 1-2 × 10(5) cm/s. In addition, we discuss the production of diffractionlike surface features, and the probable participation of nonthermal desorption mechanisms. RLA is shown to be a sensitive and useful diagnostic for studies of low-fluence laser-material interactions.  相似文献   

10.
采用溶胶-凝胶法和快速热处理工艺,分别以不锈钢(SS)和镍合金(NC)为基片,成功制备了表面均匀、无裂纹的锆钛酸铅(Pb(Zn0.53Ti0.47)O3,简写为PZT)薄膜.为了缓解金属基片与PZT薄膜之间由于晶格常数和热膨胀系数不同所造成的不匹配状态,引入了镍酸镧(LaNiO3,简写为LNO)薄膜作为过渡层.XRD和SEM结果表明,经过600℃下30min的晶化,PZT薄膜已经由无定型转化为钙钛矿相.以LNO为过渡层,在NC金属基片上制备的PZT薄膜具有较高的介电常数和较低的损耗(1kHz下ε=717,tanδ=0.08),较低的漏电流(50kV/cm下J=2.6×10-7A/cm2)以及较好的铁电性能(+Pr=90μC/cm2,-Pr=14 μC/cm2,Ec=32.5kV/cm).同时,在SS基片上,通过引入LNO过渡层,制备的PZT薄膜也具有比较好的性能.  相似文献   

11.
In this study, we deposited low-resistivity molybdenum (Mo) thin films on soda-lime glass substrates with good adhesion. We adjusted various deposition parameters such as the sputtering power (52-102 W), working distance (5.5-9 cm) and annealing temperature (26-400 °C) to investigate their impact on the sheet resistance. By using a DC magnetron sputtering system, we obtained Mo thin films having the lowest sheet resistance of 0.190 Ω/□ with a sputtering power of 82 W, working distance of 6.5 cm, and annealing temperature of 400 °C; in addition, these films had good adhesivity. These Mo thin films were suitable for use as the Mo back contact in Cu(In,Ga)Se2-based solar cells.  相似文献   

12.
The Cu(In,Ga)Se2/Mo and the Mo/glass interfaces in high efficiency thin film solar cells have been investigated by surface-sensitive photoelectron spectroscopy and bulk-sensitive X-ray emission spectroscopy. The interfaces were accessed by a suitable lift-off technique. Our experiments show a strong Se diffusion from the absorber into the Mo film, suggesting the formation of a MoSe2 layer in the surface-near region of the back contact. In addition, we find a Ga diffusion into the Mo back contact, while no diffusion of In and Cu occurs. Furthermore, we derive a detailed picture of the Na distribution near the back and front side of the Cu(In,Ga)Se2 absorber.  相似文献   

13.
Annealing of 100 nm-thick Cu, Cu(Mo) and Cu(Ag) films was carried out to investigate the effect of dopant atoms on the films. Molybdenum (Mo) and silver (Ag) were selected as immiscible dopants for out-diffusion studies. A thermally grown SiO2 layer and a sputtered Ti layer were used as substrates. The dopant and substrate effects were characterized in terms of surface morphology, resistivity, preferred orientation, and diffusional characteristics. The lowest observed resistivity was 2.32 · cm in the Cu(Ag) film, which was lower than that in a pure Cu film of the same thickness. Ag addition enhanced the surface morphology and thermal stability of the Cu(Ag) films. The highest thermal stability was obtained in the case of a Cu(Mo)/Ti film which maintained film integrity to 800°C. A Ti substrate enhanced Cu(111) texture growth. A highly oriented Cu(111)-texture was obtained in the Cu(Mo)/Ti films. Cu diffusion through the Ti layer was limited in the (111)-textured Cu(Mo)/Ti films, which showed good potential as a diffusion barrier.  相似文献   

14.
利用射频磁控溅射法在玻璃基片上制备Bi/Bi2O3晶格复合热电薄膜,考察了溅射功率对单层Bi薄膜表面粗糙度和热电性能的影响,结果表明,当溅射功率为22W时,薄膜具有最小的表面粗糙度16.3nm,电导率和功率因子分别为2.9×10^4S/m和5.74μV/k^2m,单层Bi薄膜最佳的工作温度为85~105℃。Bi/Bi2O3晶格复合热电薄膜最佳的溅射层数为5层,其电导率和功率因子分别为9.0×10^4S/m和21.0μN/k^2m,分别比单层Bi薄膜提高了2.1倍和2.65倍。  相似文献   

15.
The nanolaminate Al2O3/Cu/Al2O3 structures were constructed on p-type Si (001) substrates using atomic layer deposition (ALD) process with the aim to fabricating nonvolatile charge-trap memories. Low temperature Cu thin layers were deposited through plasma-enhanced atomic layre depositon of Cu aminoalkoxide (Cu(dmamb)2) combined with hydrogen plasma and Al2O3 layers were prepared by thermal atomic layer deposition of trimethylaluminum (TMA) combined with H2O. Nonvolatile features were confirmed using capacitance-voltage (C-V) measurements. The copper film functions as a charge-trapping layer and the Al2O3 thin layers were employed as tunneling and control oxide layers. Line shapes and binding energies of Cu metal and the thin layer of 6 nm Cu in nanolaminate structures were observed in the X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (TEM) image. The V(FB) shift width of the Al2O3 (28 nm)/Cu (6 nm)/Al2O3 (4.2 nm)/Si laminate structure is found to be 4.75 V in voltage sweeping between -10 and +10 V, leading to the trap density of 1.68 x 10(18) cm(-3).  相似文献   

16.
Cu-In-Te based thin films were grown onto soda-lime glass (SLG) substrates at 200 °C by co-evaporation using a molecular beam epitaxy system. The microstructural properties were examined by means of scanning electron microscopy, X-ray diffraction and Raman scattering. The crystalline quality of Cu-In-Te based thin films with high Cu/In ratios is superior to that of films with low Cu/In ratios. The films with Cu/In ratios of 0.69 ± 0.04 exhibited a single chalcopyrite phase with random orientation, whereas a defect chalcopyrite phase with a preferred (112) orientation was obtained for thin films with Cu/In ratios of 0.26 ± 0.02. However, the films with high Cu/In ratios of 0.69 ± 0.04 showed nearly constant low resistivity (∼ 10− 2 Ω cm) at temperatures from 80 to 400 K due to high hole concentration (> 1019 cm− 3), resulting in semi-metallic behavior. The hole conduction mechanism of the film (Cu/In atomic ratios = 0.26 ± 0.02) with semi-conductive properties was found to be variable-range-hopping of the Mott type in the wide range of 80-300 K. The optical bandgaps of Cu-In-Te based thin films are determined to be 0.93-1.02 eV at 300 K from transmission and reflection measurements. A solar cell with a ZnO/CdS/CuIn3Te5/Mo/SLG structure showed a total area (0.50 cm2) efficiency of 5.1% under AM1.5 illumination (100 mW/cm2) after light soaking. The conduction band offset at the CdS/CuIn3Te5 interface was estimated to be − 0.14 eV from X-ray photoelectron spectroscopy analysis.  相似文献   

17.
We report application of a near-real-time method to determine layer thickness on electroplated coin blanks. The method was developed on a simple laser-induced-breakdown spectroscopy (LIBS) arrangement by monitoring relative emission-line intensities from key probe elements via successive laser ablation shots. This is a unique LIBS application where no other current spectroscopic method (inductively coupled plasma or x-ray fluorescence) can be applied effectively. Method development is discussed, and results with precalibrated coins are presented.  相似文献   

18.
Luminescent layers are prepared by the implantation of kilo-electron-volt Er ions into tantalum pentoxide (Ta(2)O(5)) thin films made by ion plating. The implantation fluences range from 3.3 × 10(14) to 2 × 10(15) ions/cm(2), and the energies range from 190 to 380 keV. Refractive index, extinction coefficient, and losses on guided propagation are investigated. We show that these Er-implanted layers present an absorption as low as that of the nonimplanted films. When optically pumped with an Ar(+) laser (λ = 0.488 μm) beam, implanted films show peaked fluorescence spectra centered near 1.53 and 0.532 μm. We show that the fluorescence intensity is correlated with the intensity of the pump beam in the region where Er ions are implanted. Radiation patterns of Er ions located inside a single layer or inside a Ta(2)O(5)/SiO(2) dielectric stack made by ion plating are also investigated. We show that, in any case, spontaneous emission of Er ions can be spatially controlled.  相似文献   

19.
The capabilities of ultraviolet femtosecond laser ablation inductively coupled plasma mass spectrometry (UV-fs-LA-ICPMS) for depth profile analysis of thin metal coatings were evaluated. A standard sample consisting of a single Cr thin layer of 500 nm +/- 5% on a Ni substrate was used. A fast washout was obtained by a high-efficiency aerosol dispersion ablation cell (V approximately 1 cm3), which allowed single-shot analysis with increased depth resolution. Laser ablation was performed in helium at atmospheric pressure conditions. A laser repetition rate of 1 Hz and low laser fluence (<0.5 J/cm2) were used. Very low ablation rates (<10 nm/pulse) were determined by atomic force microscopy (AFM). Information about the crater geometry and morphology was investigated using scanning electron microscopy and AFM. The depth resolution, calculated via the maximum slope of the tangent in the layer interface region, was smaller than 300 nm. Our data indicate that UV-fs-LA-ICPMS represents a powerful combination of high lateral and depth resolution for the analysis of thin metal coatings. Moreover, an overall ion yield, defined as the ratio of detected ions and ablated atoms, of approximately 5 x 10-5 was estimated for the chromium layer under the operating conditions chosen. The absolute amount of ablated material per laser pulse was approximately 1 pg, which corresponds to a detection limit of 180 microg/g.  相似文献   

20.
张伟  陈顺礼  汪渊 《功能材料》2012,43(5):630-634
利用射频(RF)磁控溅射在玻璃基片上共溅射沉积Cu-Sn预制膜。采用固态硒化法,制备Cu/Sn化学计量比在1.87~2.22之间的Cu2SnSe3薄膜。研究了Cu/Sn比率对Cu2SnSe3薄膜的晶体结构、微结构、光学性能以及电学性能的影响。X射线衍射(XRD)结果表明,所制备的Cu2SnSe3薄膜为立方晶体结构,具有(111)择优取向;贫铜的Cu2SnSe3薄膜光学带隙Eg随着Cu/Sn比率增大而增大;富铜的Cu2SnSe3薄膜光学带隙Eg随着Cu/Sn比率增大而不变。薄膜电阻率为1.67~4.62mΩ.cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号