首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The collapse of laser-induced cavitation bubbles creates acoustic transients within the surrounding medium and also pressure impulses to the ablation target and light-delivery fiber during microsecond laser ablation. The impulses are investigated here with time-resolved flash photography, and they are found to occur whether or not the light-delivery fiber is in contact with the target. We demonstrate that the impulses depend primarily on the energy stored in the cavitation bubble. They are not directly dependent on the mode of light delivery (contact versus noncontact), and they are also not directly correlated to the other acoustic transients. The pressure impulses do seem to be associated with the bubble-driven jet formation caused by the bubble collapse.  相似文献   

2.
Chen X  Xu RQ  Chen JP  Shen ZH  Jian L  Ni XW 《Applied optics》2004,43(16):3251-3257
A highly sensitive fiber-optic sensor based on optical beam deflection is applied for investigating the propagation of a laser-induced plasma shock wave, the oscillation of a cavitation bubble diameter, and the development of a bubble-collapse-induced shock wave when a Nd:YAG laser pulse is focused upon an aluminum surface in water. By the sequence of experimental waveforms detected at different distances, the attenuation properties of the plasma shock wave and of the bubble-collapse-induced shock wave are obtained. Besides, based on characteristic signals, both the maximum and the minimum bubble radii at each oscillation cycle are determined, as are the corresponding oscillating periods.  相似文献   

3.
A real-time acoustic technique to characterize microbubbles produced by laser-induced optical breakdown (LIOB) in water was developed. Femtosecond laser pulses are focused just inside the surface of a small liquid tank. A tightly focused, high frequency, single-element ultrasonic transducer is positioned so its focus coincides axially and laterally with this laser focus. When optical breakdown occurs, a bubble forms and a pressure wave is emitted (i.e., acoustic emission). In addition to this acoustic signal, the microbubble is actively probed with pulse-echo measurements from the same transducer. After the bubble forms, received pulse-echo signals have an extra pulse, describing the bubble location and providing a measure of axial bubble size. Wavefield plots of successive recordings illustrate the generation, growth, and collapse of cavitation bubbles due to optical breakdown. These same plots also can be used to quantify LIOB thresholds.  相似文献   

4.
Zhou W  Li K  Qian H  Ren Z  Yu Y 《Applied optics》2012,51(7):B42-B48
The laser ablation fast pulse discharge plasma spectroscopy (LA-FPDPS) technique has demonstrated its validity to enhance the optical emission of laser-induced plasma. It has the potential to improve the performance of traditional LIBS measurement. Very recently, LA-FPDPS with a nanosecond pulse discharge circuit has been developed, which has a better capability to enhance the optical emission intensity of laser plasma compared with that using a microsecond pulse discharge circuit. In this paper, the effect of the discharge capacitance and discharge voltage on the optical emission of soil plasma generated by LA-FPDPS with a nanosecond pulse discharge circuit is evaluated in detail. In addition, the stability of the time delay between the laser firing and discharge, and between the discharge and optical emission, has been carefully investigated.  相似文献   

5.
Experimental results on the laser ablation of the highly oriented pyrolytic graphite by using light pulses of an Nd:YAG laser (pulse width 25 ns, pulse energy 220 mJ) are presented. Analysis of the surface profile of the carbon target shows that the target material melts in the course of the laser ablation. As a result of ablation, a coating consisting of carbon nanoparticles about 10 nm in size is formed on the substrate placed at a distance of 4 cm from the target. It is assumed that such particles are formed as a result of the electrodispersion of carbon droplets detached from the target surface and charged to an unstable state in the laser plasma plume. Raman spectra of the coatings indicate that the carbon nanoparticles being formed have an amorphous structure.  相似文献   

6.
Pulsed laser ablation of metal targets immersed in superfluid \(^4\hbox {He}\) is visualized by time-resolved shadowgraph photography and the products are analyzed by post-experiment atomic force microscopy (AFM) measurements. The expansion dynamics of the gaseous ablation half-bubble on the target surface appears underdamped and follows the predicted behavior for the thermally induced bubble growth mechanism. An inherent instability of the ablation bubble appears near its maximum radius and no tightly focused cavity collapse or rebound events are observed. During the ablation bubble retreat phase, the presence of sharp edges in the target introduces flow patterns that lead to the creation of large classical vortex rings. Furthermore, on the nanometer scale, AFM data reveal that the metal nanoparticles created by laser ablation are trapped in spherical vortex tangles and quantized vortex rings present in the non-equilibrium liquid.  相似文献   

7.
Yan Z  Bao R  Busta CM  Chrisey DB 《Nanotechnology》2011,22(26):265610
We report on the formation of hollow MgO particles by excimer laser ablation of bulk Mg in water and aqueous solutions of sodium dodecyl sulfate (SDS) and sodium citrate (SC). Lamellar nanostructures of Mg(OH)(2) also formed in water, but the formation could be avoided by the addition of SDS or SC. Laser ablation produced not only Mg species that were oxidized into MgO and Mg(OH)(2) in water, but also cavitation bubbles. The bubble interfaces trapped the MgO nanoparticles to decrease the surface free energy of the system, finally resulting in hollow particles.  相似文献   

8.
针对激光击穿水介质过程中的微观及宏观特性研究,利用调QNd:YAG激光聚焦击穿水介质形成激光声源,采用高速摄像机、高频测量水听器对激光击穿水介质过程中的等离子腔体闪光、空泡脉动、近/远场声波特性等综合效应进行了实验测量。实验表明:激光空泡的特征与水动力空化空泡相似;激光声信号强度在光击穿条件下与入射激光能量具有一定的线性关系;声脉冲高频段占声能的主要部分。研究结果可为水下激光加工、激光医学、激光声的研究提供一定的理论和实验支持。  相似文献   

9.
The morphology and photoluminescence of ZnO nanostructures formed by laser ablation in water were found to be susceptible to the applied laser power. The products varied from nanoflakes to nanoparticles, then to short nanorods with the increase of laser power. Correspondingly, the relative intensity of violet emission decreased and that of green emission increased. The morphology formation mechanism and defect relaxation were analyzed from a view of laser power effect on the induced plasma states, which includes plasma intensity, lifetime, distribution, and thus on defect type. These results would be of great importance for understanding the growth dynamics of nanomaterials under extreme conditions.  相似文献   

10.
Emission spectroscopy of the laser induced plasma is used to characterize the laser synthesis of silver nanoparticles in water via attributing the thermodynamic parameters of the plasma plume to qualitative features of the synthesized nanoparticles. In this approach, effects of the pulse energy and frequency of a pulsedNd:YAGlaser on nanoparticles synthesis yield and size distribution is studied by an analysis on the behavior of electron temperature and total density of the plasma dominant species (neutral Ag atoms; AgI). Variation of these thermodynamic parameters obtained from the time-integrated emission spectroscopy of the induced plasma was found to be in a closed correlation with the mentioned characteristics of the synthesized nanoparticles. Assessment of the qualitative features of nanoparticles was performed by evaluating the particles concentration in liquid, optical absorption spectroscopy and transmission electron microscopy. Finally, the optimum operating conditions for the synthesis of silver nanoparticles in pure water is determined by summarizing the results of emission spectroscopy observations attributed to the mentioned characteristics of synthesized nanoparticles.  相似文献   

11.
Experiments aimed to raise the emissivity of a laser-produced plasma source with a Xe gas target in the far-UV spectral range are described. In these experiments, the main pulse of the IR Nd:YAG laser was preceded by a pre-ionization pulse of a UV KrF excimer laser. The consequences of applying the prepulse and its influence on the short-wavelength emission intensity were traced up to main-pulse delays of about 5 μs with respect to the prepulse. It is supposed that the main mechanism by which the prepulse affects the evolution of the plasma and its emission intensity is related to the density waves excited in the gas target by this pulse.  相似文献   

12.
The plasma produced during laser ablation deposition of thin film YBCO has been studied by optical emission spectroscopy. There is evidence of increased YO band emission in the range 590–625 nm as the ambient oxygen gas pressure confining the plume is increased in the range 30–200 m Torr. Temporal profiles show that close to the target the plume is insensitive to ambient oxygen pressure. It is deduced that the optical emission here is excited by electron impact excitation. Further away from the target there is evidence that two distinct processes are at work. One is again electron excitation; the emission from this process decreases with distance because the expanding plume cools and collisions become less frequent in the expanding gas. The second is driven by oxidation of atomic species expelled at high speeds from the target. The main region of this activity is in the plume sheath where a shock front ensures heating of ambient O2 and reaction of monatomic plasma species to form oxide in an exothermic reaction. Spatial mapping of the emission demonstrates clearly how increasing oxygen gas pressure confines the plasma and enhances the emission intensity from the molecular YO species ejected from the target in a smaller region close to the target. Ba+ is observed as a dominant species only very close to (within 1 mm of) the target. Absorption spectra have been taken in an attempt to examine ground state and cool species in the plume. They reveal the quite surprising result that YO persists in the chamber for periods up to 1 msec. This suggests an explanation for the recent report of off-axis laser deposition in terms of simple condensation. Previously, quasi-ballistic transfer of material from target to substrate has been considered the only significant process.  相似文献   

13.
We have applied laser-induced breakdown spectroscopy to quantitative analysis of colloidal and particulate iron in water. A coaxial sample flow apparatus developed in our previous work, which allowed us to control the atmosphere of laser-induced plasma, was used. Using sequential laser pulses from two Q-switched Nd:YAG lasers as excitation sources, the FeO(OH) concentration in the tens of ppb range was determined with an optimum interval between two laser pulses and an optimum delay time of a detector gate from the second pulse. The detection limit of Fe decreased substantially using two sequential laser pulse excitations: the 0.6 ppm limit of single pulse excitation to 16 ppb with sequential pulse excitation. The effects of the second laser pulse on the plasma emission were studied. The concentration of iron in fine particles in boiler water sampled from a commercially operated thermal power plant has been determined successfully by this method. The results show the capability of laser-induced breakdown spectroscopy in determining suspended colloidal and particulate impurities in a simple and quick way.  相似文献   

14.
The application of ultrasound and acoustic cavitation in liquid exfoliation of bulk layered materials is a widely used method. However, despite extensive research, the fundamental mechanisms remain far from being fully understood. A number of theories have been proposed to interpret the interactions between cavitation and bulk layered materials and hence to explain the mechanisms of ultrasound assisted exfoliation. Unfortunately, most of the research reported to date is ambiguous or inconclusive due to lack of direct real-time experimental evidence. In this paper, we report systematic work characterising cavitation emissions and observing the exfoliation of graphite in situ, in deionised water under the dynamic interaction with laser and ultrasound induced cavitation bubbles. Using ultra-high-speed optical imaging, we were able to determine the dynamic sequence of graphite exfoliation events on a time scale never reported before. Real-time observations also revealed that shock waves with a pressure magnitude up to 5 MPa and liquid-jets in the range of 80 ms−1, from transient cavitation bubble implosions, were essential for the initiation and propagation of the exfoliation process. On the other hand, bubble oscillations associated with stable cavitation were beneficial for promoting a gentler delamination of graphite layers.  相似文献   

15.
Pearman W  Scaffidi J  Angel SM 《Applied optics》2003,42(30):6085-6093
Use of dual-pulse laser-induced breakdown spectroscopy with an orthogonal spark orientation is presented as a technique for trace metal analysis in bulk aqueous solutions. Two separate Q-switched Nd:YAG lasers operating at their fundamental wavelengths are used to form a subsurface, laser-induced plasma in a bulk aqueous solution that is spectroscopically analyzed for the in situ detection of Ca, Cr, and Zn. Optimizing the key experimental parameters of proper spark alignment, gate delay (td), gate width (tb), and interpulse timing (deltaT) allowed experimentally determined detection limits of the order of micrograms per milliliter and submicrograms per milliliter. We present supporting evidence of a sampling mechanism that involves the formation of a cavitation bubble with the first pulse (E1) followed by analysis of that bubble with a second pulse (E2). The plasma created by E2 contains the analytically relevant information from the aqueous sample and often represents >250-fold enhancement over a single laser pulse with energy equal to E1 alone.  相似文献   

16.
采用多波长(1064nm、532nm、248nm)脉冲激光在去离子水中对责金属Au、Ag片表面进行激光烧蚀(PLA).利用TEM、AFM、SEM对烧蚀金属片表层及产物(微/纳米尺度的金属颗粒)进行观察分析,认为在液相水环境中,整个烧蚀过程主要可分为激光诱导相沸腾爆炸和等离子体羽辉混合体膨胀2个过程.在这2个过程中分别产生得到具有微米尺度的球状金属颗粒和纳米尺度的金属颗粒.同时,具有纳米尺度金属Au/Ag颗粒经过强激光光子"二次"修饰改性过程,形成具有形状统一、分散性和稳定性较好的金属纳米胶体体系,这些胶体中金属纳米颗粒作为探针,在表面增强拉曼散射(SERS)光谱学方面有很好的应用价值.  相似文献   

17.
ZnO nanoparticles were synthesized by liquid-phase pulse laser ablation of a Zn foil target immersed in deionized water. Nanosecond Q-switched Nd:YAG laser pulses of 532 nm were applied to the Zn foil target at a perpendicular and inclined (θ = 45°) angles. X-ray diffraction analysis revealed that both cases feature a ZnO nanostructure with a hexagonal wurtzite structure and that the particle size increases with the inclined target angle. Field emission scanning electron microscopy results of a colloidal drop cast on a glass substrate showed the ZnO has a nanorod structure in the case of a perpendicular target angle and an interlaced tattered nanosheet structure in the case of an inclined target angle. Photoluminescence spectra showed emission peaks in the UV, violet, blue, and green spectral regions, which correspond to excitonic and various defects resulting in an enhancement of emissions at inclined target angle.  相似文献   

18.
It is found in this work that variation of laser power density in low-pressure plasma spectrochemical analysis of hydrogen affects sensitively the hydrogen emission intensity from the unwanted and yet ubiquitous presence of ambient water. A special experimental setup has been devised to allow the simple condition of focusing/defocusing the laser beam on the sample surface. When applied to zircaloy-4 samples prepared with various hydrogen impurity concentrations using low-pressure helium surrounding gas, good-quality hydrogen emission lines of very high signal to background ratios were obtained with high reproducibility under weakly focused or largely defocused laser irradiation. These measurements resulted in a linear calibration line with nonzero intercept representing the residual contribution from the recalcitrant water molecules. It was further shown that this can be evaluated and taken into account by means of the measured intensity ratio between the oxygen and zirconium emission lines. We have demonstrated the applicability of this experimental approach for quantitative determination of hydrogen impurity concentrations in the samples considered.  相似文献   

19.
The purpose of this study is to calculate the shear stress that is produced on a surface due to the flow field induced by an oscillating cavitation bubble generated with a continuous wave (CW) laser in a saturated copper nitrate solution using COMSOL software. The calculation is based on experimental results of a previous report where cavitation bubble dynamics using high speed photography of CW laser-induced bubbles with a time resolution of 7???s per frame was studied. The shear stresses originated within the flow field around the oscillating bubbles have been calculated to have a maximum value of 9500?Pa.  相似文献   

20.
The release of individual polymer micropallets from glass substrates using highly focused laser pulses has been demonstrated for the efficient separation, collection, and expansion of single, adherent cells from a heterogeneous cell population. Here, we use fast-frame photography to examine the mechanism and dynamics of micropallet release produced by pulsed laser microbeam irradiation at lambda = 532 nm using pulse durations ranging between 240 ps and 6 ns. The time-resolved images show the laser microbeam irradiation to result in plasma formation at the interface between the glass coverslip and the polymer micropallet. The plasma formation results in the emission of a shock wave and the ablation of material within the focal volume. Ablation products are generated at high pressure due to the confinement offered by the polymer adhesion to the glass substrate. The ablation products expand underneath the micropallet on a time scale of several hundred nanoseconds. This expansion disrupts the polymer-glass interface and accomplishes the release of the pallet from its glass substrate on the microsecond time scale (approximately 1.5 micros). Our experimental investigation demonstrates that the threshold energy for pallet release is constant (approximately 2 microJ) over a 25-fold range of pulse duration spanning the picosecond to nanosecond domain. Taken together, these results implicate that pallet release accomplished via pulsed laser microbeam irradiation is an energy-driven plasma-mediated ablation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号