首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
Bi2O3和V2O5复合掺杂BaTi4O9微波介质陶瓷   总被引:1,自引:1,他引:0  
研究了多元掺杂对BaTi4O9微波介质陶瓷的烧结和介电性能的影响。通过单独添加烧结助剂Bi2O3和V2O5以及复合添加Bi2O3、V2O5来降低烧结温度,并且保持较好的微波介电性能。实验结果表明,当复合添加Bi2O3和V2O5各0.5%(质量分数)烧结温度为1160℃时,BaTi4O9微波介质陶瓷在2.5GHz下:εr为40.1,tgδ为6×10–4,τf为64×10–6℃–1,保持了良好的介电性能。  相似文献   

2.
采用固相反应法制备了(Mg1–xCax)TiO3微波介质陶瓷。探讨了复合添加Na2O和K2O对(Mg1–xCax)TiO3陶瓷烧结性能和介电性能的影响。结果表明:复合添加碱金属氧化物,陶瓷的主晶相为MgTiO3和CaTiO3,同时,可以抑制中间相MgTi2O5的产生,有效降低陶瓷的烧结温度至1280℃。当Na2O和K2O添加总量为质量分数1.2%,且Na2O/K2O质量比为2∶1时,所制陶瓷介电性能最佳:εr=19.71,Q.f=3.59×104GHz(7.58 GHz),τf=–1.40×10–6/℃。  相似文献   

3.
研究了PbO3-CuV2O6(PBC)玻璃对(Pb,Ca,La)(Fe,Nb)O3(PCLFN)陶瓷微波介电性能的影响.当纯PCLFN陶瓷在1150℃烧结,介电常数εr=103,品质因数与频率之积Qf=5640 GHz,频率温度系数τf=7.1×10-6/℃.PBC玻璃添加剂能降低PCLFN陶瓷的烧结温度到1 050℃左右,同时能保持良好的介电性能.随着PBC玻璃添加量的质量分数从1.0%增加2.0%,陶瓷的Qf值减小.掺杂ω(PBC)=1%玻璃、在1 050℃烧结的陶瓷样品,能获得良好的微波介电性能为Qf=5 392 GHz,τf=8.18×10-6/℃,εr=101.  相似文献   

4.
采用固相法在880~975℃下烧结制备了添加w(CuO)为2.00%,w(B2O3)为3.00%及w(SnO2)为0.15%的ZnNb2O6-1.75TiO2基复合微波介质陶瓷。研究了该陶瓷的低温烧结机理、微波介电性能及其在多层片式陶瓷电容器中的应用。结果显示:随着烧结温度的提高,物相由Zn2TiO4,Zn0.17Nb0.33Ti0.5O2,ZnNb2O6向ZnTiNb2O8转变,εr和τf减小,Q·f升高。但当t≥975℃时,出现过烧现象,晶体缺陷增多恶化了材料的Q·f。在950℃烧结4h时,得到最好的介电性能:εr=36.7,τf=–22.6×10–6/℃,Q·f=18172.2GHz。且在此温度下制备的多层片式陶瓷电容与内电极Ag90Pd10的兼容性良好,Res为0.3426Ω,tanδ为9×10–5,可靠性良好。  相似文献   

5.
采用La2O3-B2O3-ZnO(LBZ)玻璃掺杂钙钛矿系CaO-La2O3-TiO2(CLT)微波介电陶瓷。运用XRD、SEM和微波介电性能测试等手段,研究了LBZ掺杂对样品烧结性能及微波介电性能的影响。结果表明,在CLT陶瓷中添加LBZ,有效促进CLT陶瓷烧结,使得CLT的烧结温度由1 350℃降低到950℃以下,同时保持较好的介电性能。当LBZ的质量分数为3%时,样品在950℃保温4h后烧结致密,并获得最佳微波性能,即介电常数εr=103.12,品质因数与频率的乘积Q×f=8 826GHz(f=3.03GHz),频率温度系数τf=87.52×10-6/℃。  相似文献   

6.
利用传统固相烧结法制备了ZnO-B2O3玻璃掺杂的Mg2TiO4微波介质陶瓷,研究了ZnO-B2O3玻璃掺杂对所制陶瓷相成分、微观形貌和微波介电性能的影响。结果表明:ZnO-B2O3玻璃掺杂能使Mg2TiO4陶瓷的致密化温度降低200℃左右。当Mg2TiO4中掺杂质量分数2%的ZnO-B2O3玻璃时,经1 300℃烧结所得陶瓷微波性能较好:εr=13.62、Q.f=101 275 GHz、τf=–51×10–6/℃。  相似文献   

7.
采用传统的固相反应法制备Li-Al-B(LAB)掺杂立方晶系Li2O-Nb2O5-TiO2(LNT)微波介电陶瓷。运用XRD、SEM和微波介电性能测试等手段,研究了LAB掺杂对样品烧结性能及微波介电性能的影响。结果表明,在LNT陶瓷中添加LAB,有效促进LNT陶瓷烧结,使材料的介电常数和品质因数显著提高。当掺入LAB的质量分数为4%时,样品在900℃保温2h后烧结致密,并获得最佳微波性能:介电常数εr=18.05,品质因数与频率的乘积Q×f=22 040GHz(f=6.41GHz),频率温度系数τf=-20.74×10-6/℃。  相似文献   

8.
讨论了复合添加Zn O/V2O5对(Zr0.8Sn0.2)Ti O4介质陶瓷烧结机制和微波介电性能的影响。结果表明:Zn O/V2O5对(Zr0.8Sn0.2)Ti O4的烧结有一定的促进作用,但Zn O/V2O5添加量的增大会造成晶格缺陷和残留气孔增多,从而导致材料的密度和Q×f降低。在1 320℃保温4 h并添加了0.6 wt%Zn O/V2O5的试样具有相对较好的介电性能:εr=36.48,Q×f=16 800 GHz。  相似文献   

9.
采用固相反应法,在不同温度(1100~1250℃)下预烧后烧结制备了Ba4La9.33(Ti0.95Zr0.05)18O54微波介质陶瓷,研究了预烧温度对其相组成、显微结构以及微波介电性能的影响。结果表明:不同预烧温度下制备的陶瓷样品主晶相均为类钨青铜结构的BaLa2Ti4O12晶相。1200℃预烧制备的陶瓷样品晶粒为典型的柱状晶,分布均匀,且晶粒尺寸最大。1200℃预烧后,于1400℃烧结制备的陶瓷样品具有最佳的微波介电性能:εr=86.83,Q·f=5875GHz(4.482GHz),τf=81.99×10–6/℃。  相似文献   

10.
采用微波烧结法和常规烧结法制备0.92MgAl2O4-0.08(Ca0.8Sr0.2)TiO3微波介质陶瓷,研究了两种烧结方式对陶瓷烧结性能、微观结构、相组成和介电性能的影响。结果表明:与传统烧结方式相比,微波烧结0.92Mg Al2O4-0.08(Ca0.8Sr0.2)TiO3陶瓷缩短了烧结周期,其物相组成无变化,微波烧结后的样品致密度高,晶粒细小,分布均匀,介电性能更加优异。在1 440℃下采用微波烧结20 min制备的0.92MgAl2O4-0.08(Ca0.8Sr0.2)TiO3陶瓷获得最佳的介电性能,εr=11.20,Q×f=56 217 GHz,τf=–3.4×10–6/℃。  相似文献   

11.
采用固相反应法,以Ca0.3(Li0.5Sm0.5)0.7TiO3(CLST—0.7)陶瓷为基料,掺杂质量分数为10%的CaO-B2O3-SiO2(CBS)氧化物和2%~6%的Li2O-B2O3-SiO2-CaO-Al2O3(LBSCA)玻璃料为复合烧结助剂,研究了LBSCA掺杂量对CLST—0.7陶瓷的低温烧结行为及微波介电性能的影响。结果表明,复合烧结助剂掺杂促使CLST—0.7陶瓷烧结温度降低了200~300℃,并保持良好的微波介电性能。掺杂质量分数10%CBS和4%LBSCA的CLST—0.7陶瓷经950℃烧结5h后,其εr=71.84,Q·f=1967GHz,τf=41.7×10–6/℃。  相似文献   

12.
采用B2O3-CuO-Li2CO3(BCL)作为助烧剂对(Ca0.9375Sr0.0625)0.3(Li0.5Sm0.5)0.7TiO3(CSLST)微波介质陶瓷进行降温烧结。系统讨论了BCL的添加量对CSLST微波介质陶瓷的烧结行为、晶体结构及微波介电性能的影响。结果表明:BCL的加入将CSLST陶瓷的烧结温度从1 250℃降至925℃。当BCL添加量小于质量分数5.5%时,样品中只含单一的钙钛矿结构晶体,而当BCL添加量大于质量分数7.5%时,则会产生第二相。添加BCL的质量分数为5.5%,烧结温度为925℃保温5 h,所制CSLST陶瓷具有良好的微波介电性能:εr=86.69,Q.f=2 267 GHz,τf=29.3×10–6/℃。  相似文献   

13.
SnO2掺杂ZnO-Nb2O5-TiO2微波介质陶瓷   总被引:1,自引:0,他引:1  
研究了 SnO_2对 ZnO-Nb_2O-5-TiO_2陶瓷相结构和微波介电性能的影响。随 Sn 添加量的增加,晶相组成逐步从(Zn_(0.15)Nb_(0.30)Ti_(0.55))O2相转变为 ZnTiNb_2O_8相,相对介电常数 ?r减少,?f向负频率温度系数方向移动, 当 Sn 含量增加到0.20,?f可降至 9.8×10–6℃–1。当 SnO2的摩尔比 y 为 0~<0.08 时,形成完全固溶体,提高 Q·f 值;当 y>0.08,部分Sn 形成第 2 相,降低其 Q·f 值。当 y 为 0.08,在 1 150℃烧结,具有很好的微波介电性能,其 ?r为 50.3,Q·f 为 14 892GHz,?f为 25.12×10-6℃–1。  相似文献   

14.
采用传统电子陶瓷制备方法研究了Co2O3(1.5%~5.0%,质量分数)掺杂的0.965MgTiO3-0.035SrTiO3(MST0.035)微波介质陶瓷,分析了Co2O3含量对MST0.035陶瓷的烧结性能、晶相结构、显微形貌以及微波介电性能的影响。结果表明:Co2O3的掺杂促进了MST0.035陶瓷的烧结。随着Co2O3掺杂量的增加,陶瓷介电常数略有下降,谐振频率温度系数以及品质因数增加,同时中间相MgTi2O5逐渐减少直至完全消失。当Co2O3掺杂量为质量分数3.0%时,MST0.035陶瓷的烧结温度由1 380℃降低到1 290℃,其烧结所得的样品具有优良的微波介电性能:谐振频率温度系数τf=–2.53×10–6/℃,高的品质因数Q·f=19 006 GHz和介电常数εr=20.5。  相似文献   

15.
采用固相反应法制备了CuO掺杂的BaZn2Ti4O11陶瓷,研究了所制陶瓷的物相、微观结构和微波介电性能。结果表明,CuO既可以在晶界处形成低共熔体,导致液相烧结,降低烧结温度40℃,又可使部分Cu2+进入晶格取代了部分Zn2+,增加Q.f值。掺杂质量分数0.5%的CuO在1 160℃烧结2 h所制得BaZn2Ti4O11陶瓷的微波介电性能较佳:相对介电常数εr=29.4,Q.f=50 500 GHz,频率温度系数τf=–35.6×10–6/℃。  相似文献   

16.
采用固相反应法制备了添加复合助烧剂BaCu(B<,2>O<,5>)-ZnO的16CaO-9Li<,2>O-12Sm<,2>O<,3>-63TiO<,2>(CLST)陶瓷研究了所制CLST陶瓷的烧结特性、微观结构及介电性能.结果表明:低熔点的BaCu(B<,2>O<,5>)-ZnO复合助烧剂的加入,使CLST陶瓷的烧结温...  相似文献   

17.
为实现低温烧结,采用固相反应法制备了H3BO3掺杂改性的BaO-3TiO2微波介质陶瓷,研究了H3BO3掺杂量对其烧结温度和介电性能的影响,并与H3BO3掺杂改性的BaTi4O9陶瓷进行了对比研究。结果表明,H3BO3掺杂能使BaO-3TiO2陶瓷的烧结温度降低到950℃,原因是烧结过程中形成了熔点约为899℃的液相BaB2O4。当掺杂质量分数为3%的H3BO3时,制备的BaO-3TiO2微波介质陶瓷具有良好的介电性能:εr=34.1,Q·f=9000GHz(4.0GHz),略优于H3BO3掺杂改性的BaTi4O9陶瓷。  相似文献   

18.
以柠檬酸为络合剂,通过sol-gel法制备了Ba3.99Sm9.34Ti18O54陶瓷前驱体;经1100℃预烧2h压片成型后,再在1300℃保温3h,即得到了烧结致密的陶瓷样品。与传统固相法相比,其烧结温度降低了50℃,且陶瓷晶粒细小,晶粒分布均匀,具有更加优良的微波介电性能:εr=79.56,Q·f=9636GHz(4.71GHz),τf=–1.23×10–6/℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号