共查询到20条相似文献,搜索用时 8 毫秒
1.
在机器人场景识别问题中,将连续场景的相关性通过基于隐马尔可夫模型的上下文模型进行描述.采用不同于传统的使用生成模型方法学习上下文场景识别模型的方式,首先引入稀疏贝叶斯学习机对上下文模型中图像特征的后验概率进行建模,然后通过贝叶斯原理将稀疏贝叶斯模型与隐马尔可夫模型结合,提出一种能够实现上下文场景识别模型的判别学习方法.在真实场景数据库上的实验结果表明,由该方法得到的上下文场景识别系统具有很好的场景识别能力和泛化特性. 相似文献
2.
现有研究工作没有确定概率向量模型的混合部分比例,所以无法解决MCMC方法的迭代收敛性问题。在具有空间平滑约束的高斯混合模型GMM基础上提出新型贝叶斯网络模型并应用于图像分割领域。模型应用隐Dirichlet分布LDA的概率密度模型和Gauss-Markov随机域MRF的隐Dirichlet参数混合过程来实现参数平滑过程,具有如下优点:针对空间平滑约束规范概率向量模型比例;使用最大后验概率MAP和期望最大化算法EM完成闭合参数的更新操作过程。实验表明,本模型比其他应用GMM方法的图像分割效果好。该模型已成功应用到自然图像和有噪声干扰的自然艺术图像分割过程中。 相似文献
3.
混合树增广朴素贝叶斯分类模型 总被引:1,自引:0,他引:1
树增广朴素贝叶斯分类算法(TANC)虽然降低了朴素贝叶斯分类算法(NBC)的条件独立性约束,但是该模型同时又要求每个条件属性结点(除树的根结点外)都有两个父结点,这种限制同样降低了分类的正确率.因此,提出了一种基于粗糙集理论的混合树增广朴素贝叶斯分类模型(MTANC).通过在UCI数据集上的仿真实验,验证了该方法的有效性. 相似文献
4.
5.
研究了人脸检测的贝叶斯特征判别法,该方法包括三个部分:原始图像的特征判别分析、人脸区和其它区的统计建模以及贝叶斯分类器。特征分析包括一维Harr小波变换和幅度投影,后者可以获取人脸图像垂直方向对称分布和水平方向特征。统计建模将人脸部分看作多维正态分布,估算其条件概率密度函数(PDF)。最后使用贝叶斯分类器检测人脸。该方法具有很好的外推能力。 相似文献
6.
针对马尔可夫链蒙特卡罗方法普遍存在的迭代收敛性问题,在具有空间平滑约束的高斯混合模型条件上提出改进空间约束贝叶斯网络模型并在图像分割领域进行具体应用。所提模型应用隐狄利克雷分布(LDA)概率密度模型和高斯-马尔可夫定理的随机域参数混合过程来实现参数平滑。所提方法根据空间信息先验平滑变换操作,在待处理像素点的上下文混合结构中引入LDA符合多项式分布,用来替换传统期望最大化算法中映射操作。LDA参数采用闭合形式将有利于准确估计最大后验概率(MAP)框架与上下文混合结构的相关比例。实验结果表明,应用PRI、VoI、GCE和BDE指标进行效果比较,该方法比联合系统工程组(JSEG)、当前变换矩阵(CTM)和最大后验概率-最大似然法(MM)方法的图像分割应用效果较好,高斯噪声对于该算法的鲁棒性影响较小。 相似文献
7.
建立了具有数据缺失训练集下学习贝叶斯网的一种混合启发方法:SGS-EM-PACOB算法.它基于打分-搜索方法,利用GS和EM数据补全策略分别得到学习所需要的统计因子,并将两者联合起来作为PACOB算法的启发因子.实验证明,SGS-EM-PACOB算法充分保留GS和EM两者的优点,促使算法能够平稳地收敛到理想结果.相对于只具有单一数据补全策略的算法,该算法不仅在度量数据拟合程度的Logloss值上保持稳定,而且在学习到的贝叶斯网络结构上也有改进. 相似文献
8.
经典隐马尔可夫模型用于语音识别存在的两个主要缺陷是“离散状态假设”和“独立分布假设”。前者忽略了语音信号的非平稳性,后者忽略了语音信号的相关性。文章将混合因子分析方法用于语音建模,提出了基于混合因子分析的隐马尔可夫模型框架,并用动态贝叶斯网络形象地表示。该模型框架不仅从理论上解决了上述问题,而且给出许多语音建模的选择。目前广泛使用的统计声学模型均可视为该模型的特例。 相似文献
9.
近年来使用高斯模型作为块先验的贝叶斯方法取得了优秀的图像去噪性能,但是这一方法在去噪之外的逆问题求解方面性能不太稳定。提出一种基于分层贝叶斯的高斯混合模型对图像块建模,对模型参数引入先验知识,利用Gaussian-Wishart分布对均值和协方差矩阵的概率分布建模,使得块估计过程更加稳定。基于邻近块的相干性,利用L2范数度量完成局部窗口中相似块的聚类,局部窗口相似块利用特定均值和协方差的多元高斯概率分布建模,利用累加平方图及快速傅里叶变换的数值优化方法,加快相似性度量的计算时间。使用基于马式距离的高斯分布相似度的聚合权重,结合图像上的空间域高斯相似度,更好地拟合自然图像的统计特性。通过实验验证了提出的模型在图像复原求解中的有效性。 相似文献
10.
贝叶斯决策树在英文现在分词词性识别中的应用 总被引:1,自引:0,他引:1
针对英文现在分词词性标注这一特定问题存在的难点分析了隐马尔可夫模型(HMM)的不足,提出了贝叶斯决策树模型.对一个已经标注好的语料库进行统计,运用决策树C4.5算法从单边条件和双边条件两个方面对英语现在分词的三种词性进行合理的分类消歧.对于双边条件下仍然存在歧义的情况,用贝叶斯最小风险对决策树改进,用标注好的语料库对模型进行训练.最后,采用一个未经过标注的语料库进行测试,取得了非常好的效果,证明了模型的优越性. 相似文献
11.
12.
基于高斯混合模型的遥感影像连续型朴素贝叶斯网络分类器 总被引:1,自引:0,他引:1
提出了一种新的嵌入高斯混合模型(GMM,Gaussian Mixture Model)遥感影像朴素贝叶斯网络模型GMM-NBC(GMMbased Na ve Bayesian Classifier)。针对连续型朴素贝叶斯网络分类器中假设地物服从单一高斯分布的缺点,该方法将地物在特征空间的分布用高斯混合模型来模拟,用改进EM算法自动获取高斯混合模型的参数;高斯混合模型整体作为一个子节点嵌入朴素贝叶斯网络中,将其输出作为节点(特征)的中间类后验概率,在朴素贝叶斯网络的框架下进行融合获得最终的类后验概率。对多光谱和高光谱数据的分类实验结果表明,该方法较传统贝叶斯分类器分类效果要好,且有较强的鲁棒性。 相似文献
13.
文本聚类中的贝叶斯后验模型选择方法 总被引:19,自引:0,他引:19
对聚类分析中的模型选择特别是混合模型方法进行了较全面地介绍与总结,对其中的关键技术逐一进行了讨论。在此基础上,提出了贝叶斯后验模型选择方法,并把它与文档产生特征序列的物理模型相结合,给出了一个用于聚类分析的概率模型。对真实文本数据的测试中该模型取得了非常好的效果。同时对不同贝叶斯估计方法取得的效果进行了对比。 相似文献
14.
针对小样本数据集下学习贝叶斯网络 (Bayesian networks, BN)结构的不足, 以及随着条件集的增大, 利用统计方法进行条件独立 (Conditional independence, CI) 测试不稳定等问题, 提出了一种基于先验节点序学习网络结构的优化方法. 新方法通过定义优化目标函数和可行域空间, 首次将贝叶斯网络结构学习问题转化为求解目标函数极值的数学规划问题, 并给出最优解的存在性及唯一性证明, 为贝叶斯网络的不断扩展研究提出了新的方案. 理论证明以及实验结果显示了新方法的正确性和有效性. 相似文献
15.
如今,在交通管理系统、军事机械化战场、安全行驶系统中,对实时、准确、可靠的移动对象轨迹预测具有很重要的作用,在市场上的应用越来越广,简称智能化预测。智能化预测可以提供精准的基于位置的服务,还可以根据预判,给车主推荐最优路线,这成为移动对象数据库研究的热点。针对现有方法的不足,提出基于高斯混合-贝叶斯模型的轨迹预测模型。实验表明,GM-BM模型在路段车流量正常情况下,通过调整混合模型中子模型的权重,可预测出最可能的轨迹,经计算与相同参数设置下的单模型相比,预测准确性至少提高10.00%。 相似文献
16.
小世界网络在聚类应用中具有良好的性质,贝叶斯网络在概率推理中也得到了广泛的研究.将小世界网络和贝叶斯网络结合起来,形成了一种混合推荐模型.该混合模型由两层组成,分别是用户层和商品层.其中小世界网络用于描述用户层内用户-用户结点间的关系,贝叶斯网络用于描述商品层内商品-商品结点,以及层间用户-商品结点间的偏好关系.对小世界网络的用户聚类方法、贝叶斯网络结构和参数学习方法、以及两层混合模型的推荐算法进行了描述,实验表明,该模型能够很好地表示用户-用户、商品-商品、以及用户-商品间的关系,推荐结果具有良好的准确度. 相似文献
17.
许多方便的可穿戴设备被用于医疗用途,如测量心率(HR)、血压和其他信号. 随着睡眠质量监测问题的出现,如何从这些信号中区分睡眠和唤醒状态成为关键问题. 提出了一种基于动态时间规整(DTW)的贝叶斯方法用于睡眠和唤醒分类. 利用心率和血氧饱和度(SpO2)的信号去分析睡眠状态和一些睡眠相关问题. 利用DTW从原始的心率、血氧饱和度信号中提取特征,然后贝叶斯分类方法用于区别睡眠和唤醒状态. 最后,从睡眠心脏健康研究网站收集数据的一个真实案例研究验证了基于DTW的贝叶斯方法的可行性和优势. 相似文献
18.
反垃圾邮件技术已成为人们关注的一个焦点。基于贝叶斯理论的垃圾邮件过滤技术有着独特的优势,而其中的朴素贝叶斯模型具有算法简单、有效,易于实现等优点而成为最常用的模型。本文系统地介绍了朴素贝叶斯及其扩展模型的核心思想,并对朴素贝叶斯模型的发展作了大胆的预测,这对贝叶斯垃圾邮件过滤技术具有理论和现实的意义。 相似文献
19.
为提高磁共振图像的重构质量,提出一种基于非参数贝叶斯分类字典学习的重建方法.通过差分变换,在梯度域中利用无限高斯混合模型将图像块自动聚类,对具有相似结构的图像块进行分类训练字典.采用非参数贝叶斯字典学习方法训练字典,克服传统字典学习对参数选择的依赖性.实验结果表明,与目前几种典型的磁共振图像重建方法相比,该方法的峰值信噪比平均提高2.9 dB;在同一噪声水平下,该方法抗噪性能更强,重构质量更优. 相似文献
20.
基于改进贝叶斯模型的中文邮件分类算法 总被引:4,自引:0,他引:4
通过分析常见的贝叶斯分类方法和实现模型,提出了一种适用于中文邮件的分类算法——基于混合模型的最小风险贝叶斯方法。混合模型将二项独立模型和多项式模型相结合,提高邮件分类的查全率,同时,在此基础上应用最小风险贝叶斯方法,进一步提高准确率。实验表明,应用改进的方法可以得到更准确的邮件分类效果。 相似文献