首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β成核剂含量对PP力学性能和结晶行为影响   总被引:2,自引:0,他引:2  
摘要:研究了β成核剂含量对聚丙烯(PP)结构和性能的影响,用偏光显微镜和广角X射线衍射法(WAXD)对PP结晶形态和结晶行为进行了研究.结果表明,当β成核剂的含量在0.05份时,冲击强度达到最大值,而拉伸强度、弯曲强度、模量、维卡软化温度等达到最小值;当β成核剂含量为0.05份以下时,随着β成核剂含量增加,PP中β晶结晶度大幅度上升,同时α晶结晶度大幅度下降;增加β成核剂用量至大于0.10份时,β晶结晶度略为下降,而α晶结晶度上升,但总结晶度随着β成核剂含量增加呈现上升趋势.用差示扫描量热法(DSC)对纯PP和β成核剂-PP进行比较,发现β成核剂对PP的结晶有影响.  相似文献   

2.
采用NT-A和NT-D成核剂制备了β晶型聚丙烯(β-PP),研究其熔融及结晶特性、结晶形态和力学性能.结果发现,NT-A和NT-D成核剂均使聚丙烯(PP)球晶细化,提高PP的拉伸强度、拉伸断裂应变和悬臂梁缺口冲击强度,但NT-D的β成核效果更好,其改性PP的β晶型质量分数可达80%~90%,悬臂梁缺口冲击强度是纯PP的3倍多.注射成型PP样条具有明显的皮芯层结构,纯PP样条的皮层和芯层仅含有α晶型.且结晶度差异不大;β-PP样条的皮层仅有α晶型,而芯层除α晶型外还有β晶型.  相似文献   

3.
采用熔融挤出法制备了β成核剂改性聚丙烯(PP)。研究了成核剂含量和退火处理对β成核剂改性聚丙烯(β-PP)力学性能的影响,采用广角X射线衍射仪、扫描电子显微镜对β-PP的微观结构进行表征和分析。结果表明,β成核剂含量为0.05 %(质量分数,下同)时β-PP力学性能最佳,110 ℃下退火处理1 h能够进一步提高β-PP的改性效果;适宜的成核剂含量和退火处理对诱导PP基体β晶生成及结晶完整有利;退火处理的β-PP冲击断面存在明显塑性变形现象,呈韧性断裂特征。  相似文献   

4.
利用差示扫描量热仪研究了冷却速率对β成核剂改性聚丙烯(PP)结晶行为的影响。冷却速率越慢,高温停留时间越长,则PP中β晶型含量越高,PP的冲击强度越高。冷却速率为5℃/min时,PP中β晶型质量分数达86.12%;冷却速率为20℃/min时,β晶型质量分数为72.04%;而当试样以极快速冷却时,β晶型含量为0。β晶型PP的结晶速率慢于α晶型PP,只有在较高的温度范围内等温结晶时,β晶型PP的结晶速率才快于α晶型PP。因此,一般加工工艺条件下β晶型含量较少。  相似文献   

5.
研究了稀土类β晶型成核剂(WBG)在不同添加量下对聚丙烯(PP)性能的影响,并采用偏光显微镜(PLM)、广角X射线衍射仪(WAXD)对β-PP的结晶形态进行了表征。结果表明,随着成核剂用量的增加,材料的韧性提高,拉伸强度降低,在成核剂含量为0.4%(质量分数)时冲击强度和硬度均达到最大值。缺口冲击断面形貌观察表明,在一定范围内,随着成核剂用量的增加,断裂面应力发白面积也相应增加,银纹带面积越来越大,进一步证明了稀土类β晶型成核剂的增韧作用。随着成核剂用量的增加,材料的加工流动性能降低。WAXD研究发现,成核剂加入后可大大提高PP中β晶型的含量。PLM分析表明,与α晶型PP的相比,β晶型PP的球晶尺寸大幅度减小,晶粒细化。  相似文献   

6.
新型聚丙烯β晶型成核剂的制备及应用   总被引:1,自引:0,他引:1  
利用正硅酸乙酯、硬脂酸和邻苯二甲酸钙制备了新型成核剂SLG1和SLG2。利用热分析考察了成核剂的热稳定性,采用X射线衍射分析(XRD)和偏光显微镜(PLM)对其改性聚丙烯(PP)的晶体形态进行了表征,采用差示扫描量热法(DSC)研究了其结晶行为,并测试了PP的力学性能。结果表明,成核剂SLG1和SLG2能够诱导β-PP的生成,使PP的结晶温度明显提高,并且加快了PP的结晶速率,但是降低了结晶度。成核剂使PP的晶粒明显细化,球晶之间的界面模糊。在SLG1和SLG2含量分别为0.15 %和0.3 t%时,PP的冲击强度分别由9.43 kJ/m2提高到了26.82 kJ/m2和37.79 kJ/m2。  相似文献   

7.
在聚丙烯(PP)中加入两种新型成核剂:二苄叉山梨醇衍生物YS-688(α成核剂)和芳酰胺类化合物TMB-5(β成核剂),通过密炼–挤出的方法制备了PP/成核剂共混物材料。通过偏光显微镜、X射线衍射、差示扫描量热和力学性能测试研究了这两种成核剂对共混物结晶和力学性能的影响。结果表明,两种成核剂在适量时均能提高PP的结晶速率和结晶度,细化晶粒,且使晶体界面模糊,其中TMB-5具有较强的诱导PPβ晶成核的能力,当其质量分数为0.075%时,可使PP形成树枝状的β晶,而YS-688未改变PP的晶型,只生成了α晶。YS-688可提高共混物的拉伸强度,而TMB-5对共混物的拉伸强度影响很小;当两种成核剂质量分数均为0.075%时,共混物的韧性最好,相对于纯PP,PP/YS-688共混物的常温和–30℃缺口冲击强度分别提高了37.41%和12.76%,拉伸强度提高了11.11%;PP/TMB-5共混物的常温和–30℃缺口冲击强度分别提高了100%和55.41%。  相似文献   

8.
β晶型成核剂对PP结晶行为的影响   总被引:1,自引:0,他引:1  
制备了β晶型聚丙烯(β-PP),利用广角X射线衍射仪与偏光显微镜表征了球晶形态,研究了其非等温结晶行为,并用Jeziorny法、莫志深法和Kissinger法对所得数据进行处理。结果表明,添加β晶型成核剂后,PP由α晶型向β晶型转变,起始结晶温度明显提高,总结晶时间缩短,结晶活化能降低。β-PP的Avrami指数在1.69~1.89,小于PP,表明β晶型成核剂的加入改变了PP的成核机理及生长方式。  相似文献   

9.
研究了酰胺类β晶型成核剂对无规共聚聚丙烯(PP R)非等温结晶动力学的影响。结果表明,β成核剂提高了PP R的结晶峰温。在相同的冷却速率下,β成核剂改性PP R体系的Zc比纯PP R小,半结晶时间t1/2比纯PP R长;达到相同结晶度时,β成核剂改性PP R体系所需的冷却速率大于纯PP R,这说明β成核剂的加入降低了PP R的结晶速率。莫法可以很好地表征PP R及β成核剂改性PP R体系的非等温结晶行为。  相似文献   

10.
通过微/纳共挤制备了α-PP/β-PP多层交替复合物,通过差示扫描量热仪(DSC)和偏光显微镜(POM)分析其熔融与结晶行为。结果表明,相同含量、相同加工条件下,β成核剂的成核效率低于α成核剂;α-PP/β-PP多层交替复合物的半结晶时间(t1/2)介于单台单螺杆挤出机得到的α-PP与β-PP之间;相同螺杆转速、不同层数时,与纯PP相比,成核剂的加入可明显提高α-PP/β-PP复合物的结晶温度(Tc),同时Tc随层数增加而逐渐由比较明显的2个Tc演变成1个高温Tc,类似于α/β-PP共混物的结晶行为;随分层叠加单元个数增加,提供的剪切应力越大,越有利于β晶生成。  相似文献   

11.
β晶型成核剂对PP结晶行为及性能的影响   总被引:7,自引:1,他引:6  
采用X射线衍射仪、偏光显微镜、扫描电子显微镜、差示扫描量热法研究了2种β晶型成核剂对聚丙烯(PP)结晶行为及性能的影响,并对α晶型PP与β晶型PP的宏观性能进行了分析。结果表明:加入β晶型成核剂后,PP晶型从α晶型转变为β晶型,冲击强度及热变形温度得到了大幅度提高。β晶型成核剂A可使PP的冲击强度提高近3倍;β晶型成核剂B可使PP的冲击强度提高近4.5倍,热变形温度提高约20℃。  相似文献   

12.
制备了传统的Ziegler-Natta催化剂,研究了采用釜内聚合添加β成核剂和采用釜外共混时添加β成核剂制备的β晶型聚丙烯(β-PP)的性能,结果发现:两种方法制备的PP中β晶含量都有所提高,产品的热变形温度及悬臂梁缺口冲击强度均有所改善。当釜内添加的β成核剂为430μg/g时,悬臂梁缺口冲击强度提高了30%左右,热变形温度提高了27℃左右。与釜外共混制备β-PP相比,釜内添加β成核剂制备β-PP时β成核剂用量更少,成核效果更显著。釜内添加154μg/g的β成核剂,其成核效果要好于釜外共混添加191μg/g的β成核剂。  相似文献   

13.
采用差示扫描量热仪研究了β成核剂和水滑石(LDH)/β成核剂复配的成核剂对聚丙烯(PP)非等温结晶动力学及熔融行为的影响。结果表明:加入成核剂后,PP中晶体分布不均匀且分散度增大。莫志深方法采用F(θ)表征聚合物在单位时间内达到某一结晶度时所需的冷却(或加热)速率,结晶度达到40%时,纯PP的F(θ)为3.82,加入β成核剂的PP的F(θ)为3.30,加入LDH/β成核剂的PP的F(θ)为2.49。与纯β成核剂相比,LDH/β成核剂能更好地提高PP的结晶温度、结晶速率,增强PP的β晶熔融峰,减弱β晶和α晶共存熔融峰和α晶熔融峰。  相似文献   

14.
研究了两种类型的成核剂对国产共聚聚丙烯的结晶形态以及拉伸强度、冲击强度的影响。结果表明:加入TMB-5型成核剂,聚丙烯的冲击强度有一定程度改善,w(TMB-5)为0.1%时,改性聚丙烯的缺口冲击强度达到最大;TMX-2型成核剂可改善聚丙烯的拉伸性能,但抗冲击性能降低较大;TMB-5型成核剂可显著地改变聚丙烯的结晶行为,诱导聚丙烯在结晶过程中主要形成β晶;TMX-2型成核剂可诱导聚丙烯在结晶过程中主要生成α晶,与纯PP相比,α晶的形成能力增强。  相似文献   

15.
分别制备了均聚聚丙烯(PP)(T30S)/新型成核剂(NA)和共聚PP(EPC30R)/NA体系,采用差示扫描量热仪、偏光显微镜、扫描电子显微镜和X射线衍射仪考查了成核剂NA对2种PP结晶行为的影响。结果表明,添加该类新型成核剂不仅提高了2种PP的结晶峰温度和结晶度,减小了晶粒尺寸,增大了结晶速率,还改变了PP的晶型结构;加入0.3%(质量分数,下同)的NA时,均聚PP和共聚PP的冲击强度分别提高了95 %和43 %。  相似文献   

16.
一种新型β成核剂及其对聚丙烯结晶性能的影响   总被引:11,自引:0,他引:11  
冯嘉春  陈鸣才  张秀菊  郑德  焦瑛 《塑料》2004,33(2):35-37
研究了一种稀土类新型β成核剂WBG对等规聚丙烯(iPP)结晶性能的影响。WAXD研究发现,WBG加入后可大大提高PP中β晶型的含量,当其加入量超过0 3%时,β晶型的含量可达90%;利用DSC考查了130℃时PP在加入WBG前后的等温结晶过程,发现WBG显著提高了PP的成核速率。从结构上看,WBG不同于目前常见的任何一种β成核剂,是一种高效的新型成核剂。  相似文献   

17.
采用差示扫描量热法与广角X射线衍射研究了聚丙烯(PP)的结晶形态,考察了结晶温度、外加成核剂、PP熔体流动速率和无规共聚PP中乙烯单体含量等对PP结晶形态的影响。运用PP结晶过程γ晶型与α晶型的共结晶相图,从本质上解释了结晶温度、乙烯单体含量及成核剂对PP结晶形态的影响。结果发现.PP结晶过程可以产生γ晶型,随着结晶温度的升高、成核剂含量和PP中乙烯单体含量的增加、PP熔体流动速率的增大。γ晶型含量增加。质量分数为0.1%的成核剂使PP中γ晶型的质量分数增加了15.6%;成核剂含量进一步增加,γ晶型含量增加变缓;当成核剂质量分数为0.4%时,γ晶型质量分数仅增加了近16.3%。  相似文献   

18.
β成核剂对抗冲聚丙烯共聚物的结晶和力学性能研究   总被引:3,自引:0,他引:3  
分别用α晶型成核剂和β晶型成核剂对抗冲聚丙烯共聚物(iPP)的结晶和力学性能进行研究,并用偏光显微镜(POM)、广角X射线衍射仪(WAXD)和差示扫描量热仪(DSC)对其进行了详细的表征。结果表明,α和β成核剂使iPP的起始结晶温度(ton)提高15.3℃和12.7℃,结晶峰温度(tp)提高17℃和13.7℃,结晶速率加快。两种成核剂都能使球晶细化,使结晶更加均匀化、规整化,从而使结晶度增加。α成核剂(TMA-3)使iPP的拉伸强度、冲击强度和断裂伸长率分别提高到23.43MPa、22.27kJ/m2和788%;β成核剂因主要是改变球晶的形态,形成与α球晶完全不同的β晶型,使iPP的拉伸强度、冲击强度和断裂伸长率的提高比α成核剂显著,分别达到24MPa、32.81kJ/m2和861%。  相似文献   

19.
采用DSC、XRD分析方法研究了聚苯乙烯刚性微粒(XPS)和天然胶乳包覆聚苯乙烯刚性微粒(N-XPS)对聚丙烯(PP)结晶行为的影响。结果表明:XPS和N-XPS均可加快PP在高温区的成核速率,导致PP在较高的温度下提前结晶;它的存在也阻碍了PP球晶的生长速率,使总结晶度降低,相比较而言,其中N-XPS有更好的效果。XRD分析表明:在PP中添加2%的XPS或N-XPS,均可诱导PP形成β结晶,增加用量,β-PP结晶峰消失;PP/N-XPS试样中2θ=14.02°的α晶(110)峰明显比纯PP的要小这一事实,佐证了N-XPS阻碍了PP(α-110)晶面的生长,使其结晶度降低的结果。  相似文献   

20.
聚丙烯/改性长石复合材料的制备、性能及结构表征   总被引:1,自引:0,他引:1  
以新疆地产哈密长石为原料,对长石进行湿法表面改性。以改性长石作为填料,制备了聚丙烯(PP)/改性长石复合材料,对其性能及微观结构进行了测试和表征。结果表明,改性长石的界面接触角明显增大;与PP基体相比,PP/5%改性长石复合材料的拉伸强度提高了3.78%,冲击强度提高了3.40%,热分解温度提高了6.47℃;改性长石填料起到了部分β-PP晶成核剂的作用,PP/改性长石复合材料的结晶度比纯PP有了不同程度的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号