首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research is based on a new hybrid approach, which deals with the improvement of shape optimization process. The objective is to contribute to the development of more efficient shape optimization approaches in an integrated optimal topology and shape optimization area with the help of genetic algorithms and robustness issues. An improved genetic algorithm is introduced to solve multi-objective shape design optimization problems. The specific issue of this research is to overcome the limitations caused by larger population of solutions in the pure multi-objective genetic algorithm. The combination of genetic algorithm with robust parameter design through a smaller population of individuals results in a solution that leads to better parameter values for design optimization problems. The effectiveness of the proposed hybrid approach is illustrated and evaluated with test problems taken from literature. It is also shown that the proposed approach can be used as first stage in other multi-objective genetic algorithms to enhance the performance of genetic algorithms. Finally, the shape optimization of a vehicle component is presented to illustrate how the present approach can be applied for solving multi-objective shape design optimization problems.  相似文献   

2.
3.
This paper presents a new hybrid optimization approach based on immune algorithm and hill climbing local search algorithm. The purpose of the present research is to develop a new optimization approach for solving design and manufacturing optimization problems. This research is the first application of immune algorithm to the optimization of machining parameters in the literature. In order to evaluate the proposed optimization approach, single objective test problem, multi-objective I-beam and machine-tool optimization problems taken from the literature are solved. Finally, the hybrid approach is applied to a case study for milling operations to show its effectiveness in machining operations. The results of the hybrid approach for the case study are compared with those of genetic algorithm, the feasible direction method and handbook recommendation.  相似文献   

4.
Employing the floating frame of reference formulation in the topology optimization of dynamically loaded components of flexible multibody systems seems to be a natural choice. In this formulation the deformation of flexible bodies is approximated by global shape functions, which are commonly obtained from finite element models using model reduction techniques. For topology optimization these finite element models can be parameterized using the solid isotropic material with penalization (SIMP) approach. However, little is known about the interplay of model reduction and SIMP parameterization. Also securing the model reduction quality despite major changes of the design during the optimization has not been addressed yet. Thus, using the examples of a flexible frame and a slider-crank mechanism this work discusses the proper choice of the model reduction technique in the topology optimization of flexible multibody systems.  相似文献   

5.
The limitation associated with the low optical absorption remains to be the main technical barrier that constrains the efficiency of thin–film solar cells in energy conversion. Effective design of light-trapping structure is critical to increase light absorption, which is a highly complex phenomenon governed by several competing physical processes, imposing a number of challenges to topology optimization. This paper presents a general, yet systematic approach exploiting topology optimization for designing highly efficient light-trapping structures. We first demonstrate the proposed approach using genetic algorithm (GA) based non-gradient topology optimization (NGTO), which is robust for achieving highly-efficient designs of slot-waveguide based cells with both low-permittivity and high-permittivity scattering material at single wavelength or over a broad spectrum. The optimized light-trapping structure achieves a broadband absorption efficiency of 48.1 % and more than 3-fold increase over the Yablonovitch limit. The fabrication feasibility of the optimized design is also demonstrated. Next, the gradient topology optimization (GTO) approach for designing light-trapping structure is explored based on the Solid Isotropic Material with Penalization (SIMP) method. Similar designs are obtained through both GA based NGTO and SIMP based GTO, which verifies the validity of both approaches. Insights into the application of both approaches for solving the nanophotonic design problem with optimization nonlinearity are provided.  相似文献   

6.
In this research, Method of Moving Asymptotes (MMA) is utilized for simultaneous shape and topology optimization of shell structures. It is shown that this approach is well matched with the large number of topology and shape design variables. The currently practiced technology for optimization is to find the topology first and then to refine the shape of structure. In this paper, the design parameters of shape and topology are optimized simultaneously in one go. In order to model and control the shape of free form shells, the NURBS (Non Uniform Rational B-Spline) technology is used. The optimization problem is considered as the minimization of mean compliance with the total material volume as active constraint and taking the shape and topology parameters as design variables. The material model employed for topology optimization is assumed to be the Solid Isotropic Material with Penalization (SIMP). Since the MMA optimization method requires derivatives of the objective function and the volume constraint with respect to the design variables, a sensitivity analysis is performed. Also, for alleviation of the instabilities such as mesh dependency and checkerboarding the convolution noise cleaning technique is employed. Finally, few examples taken from literature are presented to demonstrate the performance of the method and to study the effect of the proposed concurrent approach on the optimal design in comparison to the sequential topology and shape optimization methods.  相似文献   

7.
Hybrid manufacturing combines additive manufacturing’s advantages of building complex geometries and subtractive manufacturing’s benefits of dimensional precision and surface quality. This technology shows great potential to support repairing and remanufacturing processes. Hybrid manufacturing is used to repair end-of-life parts or remanufacture them to new features and functionalities. However, process planning for hybrid remanufacturing is still a challenging research topic. This is because current methods require extensive human intervention for feature recognition and knowledge interpretation, and the quality of the derived process plans are hard to quantify. To fill this gap, a cost-driven process planning method for hybrid additive–subtractive remanufacturing is proposed in this paper. An automated additive–subtractive feature extraction method is developed and the process planning task is formulated into a cost-minimization optimization problem to guarantee a high-quality solution. Specifically, an implicit level-set function-based feature extraction method is proposed. Precedence constraints and cost models are also formulated to construct the hybrid process planning task as a mixed-integer programming model. Numerical examples demonstrate the efficacy of the proposed method.  相似文献   

8.

The design of periodic elastoplastic microstructures for maximum energy dissipation is carried out using topology optimization. While the topology optimization of elastic microstructures has been performed in numerous studies, microstructural design considering inelastic behavior is relatively untouched due to a number of reasons which are addressed in this study. An RVE-based multiscale model is employed for computational homogenization with periodic boundary constraints, satisfying the Hill-Mandel principle. The plastic anisotropy which may be prevalent in materials fabricated through additive manufacturing processes is considered by modeling the constitutive behavior at the microscale with Hoffman plasticity. Discretization is done using enhanced assumed strain elements to avoid locking from incompressible plastic flow under plane strain conditions and a Lagrange multiplier approach is used to enforce periodic boundary constraints in the discrete system. The design problem is formulated using a density-based parameterization in conjunction with a SIMP-like material interpolation scheme. Attention is devoted to issues such as dependence on initial design and enforcement of microstructural connectivity, and a number of optimized microstructural designs are obtained under different prescribed deformation modes.

  相似文献   

9.
While CNC machining (subtractive method) is the only option when it comes to high quality components, it demands greater human intervention to generate the CNC programs, making it a slow and costly route. On the other hand, Rapid Prototyping (additive method) is able to convert the design into the physical objects without any human intervention. But its total automation comes with compromises in the qualities of geometry and material. A hybrid layered manufacturing process presented here combines the best features of both these approaches. In this process the near-net shape of the object is first built using weld-deposition; the near-net shape is then finish machined subsequently. Time and cost saving of this process can be attributed to reduction in NC programming effort and elimination of rough machining. It is envisioned as a low cost retrofitment to any existing CNC machine for making metallic objects without disturbing its original functionalities. Near-net shape building and finish machining happening at the same station is the unique feature of this process. A customized software generates the NC program for near-net shape building. The intricate details of integrating arc welding unit with a CNC milling machine are presented in this paper.  相似文献   

10.
This paper presents a novel hybrid optimization approach based on differential evolution algorithm and receptor editing property of immune system. The purpose of the present research is to develop a new optimization approach to solve optimization problems in the manufacturing industry. The proposed hybrid approach is applied to a case study for milling operations to show its effectiveness in machining operations. The results of the hybrid approach for the case study are compared with those of hybrid particle swarm algorithm, ant colony algorithm, immune algorithm, hybrid immune algorithm, genetic algorithm, feasible direction method and handbook recommendation.  相似文献   

11.
This work falls within the scope of computer-aided optimal design, and aims to integrate the topology optimization procedures and recent additive manufacturing technologies (AM). The elimination of scaffold supports at the topology optimization stage has been recognized and pursued by many authors recently. The present paper focuses on implementing a novel and specific overhang constraint that is introduced inside the topology optimization problem formulation along with the regular volume constraint. The proposed procedure joins the design and manufacturing processes into a integrated workflow where any component can directly be manufactured with no requirement of any sacrificial support material right after the topology optimization process. The overhang constraint presented in this work is defined by the maximum allowable inclination angle, where the inclination of any member is computed by the Smallest Univalue Segment Assimilating Nucleus (SUSAN), an edge detection algorithm developed in the field of image analysis and processing. Numerical results on some benchmark examples, along with the numerical performances of the proposed method, are introduced to demonstrate the capacities of the presented approach.  相似文献   

12.
A topology optimization approach based on the boundary element method (BEM) and the optimality criteria (OC) method is proposed for the optimal design of sound absorbing material distribution within sound barrier structures. The acoustical effect of the absorbing material is simplified as the acoustical impedance boundary condition. Based on the solid isotropic material with penalization (SIMP) method, a topology optimization model is established by selecting the densities of absorbing material elements as design variables, volumes of absorbing material as constraints, and the minimization of sound pressure at reference surface as design objective. A smoothed Heaviside-like function is proposed to help the SIMP method to obtain a clear 0–1 distribution. The BEM is applied for acoustic analysis and the sensitivities with respect to design variables are obtained by the direct differentiation method. The Burton–Miller formulation is used to overcome the fictitious eigen-frequency problem for exterior boundary-value problems. A relaxed form of OC is used for solving the optimization problem to find the optimal absorbing material distribution. Numerical tests are provided to illustrate the application of the optimization procedure for 2D sound barriers. Results show that the optimal distribution of the sound absorbing material is strongly frequency dependent, and performing an optimization in a frequency band is generally needed.  相似文献   

13.
14.
Bridging topology optimization and additive manufacturing   总被引:1,自引:0,他引:1  
Topology optimization is a technique that allows for increasingly efficient designs with minimal a priori decisions. Because of the complexity and intricacy of the solutions obtained, topology optimization was often constrained to research and theoretical studies. Additive manufacturing, a rapidly evolving field, fills the gap between topology optimization and application. Additive manufacturing has minimal limitations on the shape and complexity of the design, and is currently evolving towards new materials, higher precision and larger build sizes. Two topology optimization methods are addressed: the ground structure method and density-based topology optimization. The results obtained from these topology optimization methods require some degree of post-processing before they can be manufactured. A simple procedure is described by which output suitable for additive manufacturing can be generated. In this process, some inherent issues of the optimization technique may be magnified resulting in an unfeasible or bad product. In addition, this work aims to address some of these issues and propose methodologies by which they may be alleviated. The proposed framework has applications in a number of fields, with specific examples given from the fields of health, architecture and engineering. In addition, the generated output allows for simple communication, editing, and combination of the results into more complex designs. For the specific case of three-dimensional density-based topology optimization, a tool suitable for result inspection and generation of additive manufacturing output is also provided.  相似文献   

15.
为将无网格法的优势集成到结构拓扑优化中,基于无网格局部Petrov-Galerkin(Meshless Local Petrov-Galerkin,MLPG)法进行板结构的拓扑优化.基于带惩罚的各向同性固体微结构(Solid Isotropic Microstructure with Penalization,SIMP...  相似文献   

16.
17.
The worn mechanical components/parts arrived in the remanufacturing system exhibit highly uncontrolled variabilities in failure conditions as well as structures and shape complexities. With the aid of reverse engineering (RE) technologies, a quick and accurate acquisition of the damaged areas of the worn part is attainable and thereby facilitates remanufacturing operations necessary to bring the parts back to like-new conditions. In this paper, a reverse engineering based approach is proposed to aid the remanufacturing processes of worn parts. The proposed approach integrates 3D surface data collection, nominal model reconstruction, fine registration, extraction of additive/subtractive repair, tool path generation and actual machining process, seeking to improve the reliability and efficiency of manual repair process. For nominal model reconstruction, a Prominent Cross-Section algorithm embedded with curvature constraint is proposed to automatically identify the boundary of the part's damaged area and thereby eliminate the defective point clouds from the reconstruction process. With the nominal reconstruction model and the 3D model of the worn part, a modified ICP algorithm integrating curvature and distance constraints is proposed to achieve a best-fit position of the two models by automatically identifying and eliminating the unreliable corresponding pairs through iterations. The proposed approach is demonstrated through remanufacturing of two different mechanical components and is approved to be efficient and effective.  相似文献   

18.
Combining genetic algorithms with BESO for topology optimization   总被引:2,自引:1,他引:1  
This paper proposes a new algorithm for topology optimization by combining the features of genetic algorithms (GAs) and bi-directional evolutionary structural optimization (BESO). An efficient treatment of individuals and population for finite element models is presented which is different from traditional GAs application in structural design. GAs operators of crossover and mutation suitable for topology optimization problems are developed. The effects of various parameters used in the proposed GA on the optimization speed and performance are examined. Several 2D and 3D examples of compliance minimization problems are provided to demonstrate the efficiency of the proposed new approach and its capability of obtaining convergent solutions. Wherever possible, the numerical results of the proposed algorithm are compared with the solutions of other GA methods and the SIMP method.  相似文献   

19.
Conventional shape optimization based on the finite element method uses Lagrangian representation in which the finite element mesh moves according to shape change, while modern topology optimization uses Eulerian representation. In this paper, an approach to shape optimization using Eulerian representation such that the mesh distortion problem in the conventional approach can be resolved is proposed. A continuum geometric model is defined on the fixed grid of finite elements. An active set of finite elements that defines the discrete domain is determined using a procedure similar to topology optimization, in which each element has a unique shape density. The shape design parameter that is defined on the geometric model is transformed into the corresponding shape density variation of the boundary elements. Using this transformation, it has been shown that the shape design problem can be treated as a parameter design problem, which is a much easier method than the former. A detailed derivation of how the shape design velocity field can be converted into the shape density variation is presented along with sensitivity calculation. Very efficient sensitivity coefficients are calculated by integrating only those elements that belong to the structural boundary. The accuracy of the sensitivity information is compared with that derived by the finite difference method with excellent agreement. Two design optimization problems are presented to show the feasibility of the proposed design approach.  相似文献   

20.
This paper presents a performance index for topology and shape optimization of plate bending problems with displacement constraints. The performance index is developed based on the scaling design approach. This performance index is used in the Performance-Based Optimization (PBO) method for plates in bending to keep track of the performance history when inefficient material is gradually removed from the design and to identify optimal topologies and shapes from the optimization process. Several examples are provided to illustrate the validity and effectiveness of the proposed performance index for topology and shape optimization of bending plates with single and multiple displacement constraints under various loading conditions. The topology optimization and shape optimization are undertaken for the same plate in bending, and the results are evaluated by using the performance index. The proposed performance index is also employed to compare the efficiency of topologies and shapes produced by different optimization methods. It is demonstrated that the performance index developed is an effective indicator of material efficiency for bending plates. From the manufacturing and efficient point of view, the shape optimization technique is recommended for the optimization of plates in bending. Received November 27, 1998?Revised version received June 6, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号