首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
We investigated the effect of leptin on the postnatal development of gap junctions between folliculo‐stellate cells by using Zucker fatty (fa/fa) rats that have defects of the functional leptin receptor. Male Zucker fatty rats (fa/fa) and male Zucker lean rats (+/+) were used at each of the following postnatal ages: 20, 30, 40, 50, 60, 70, 80, 90 days, and 1 year. On one of the aforementioned dates, the anterior pituitary glands were prepared for observation by transmission electron microscopy. We quantified the number of follicles and gap junctions, and calculated the rate of occurrence as the ratio of the number of gap junctions existing between folliculo‐stellate cells per intersected follicular profile. In Zucker lean male rats, the number of gap junctions remained relatively constant from days 50 to 90 (0.44 ± 0.02 to 0.49 ± 0.03), and was similar in 1 year old rats (0.47 ± 0.03). These data were statistically higher compared to Zucker fatty male rats. In Zucker fatty male rats, very few gap junctions were observed in 30‐day‐old rats (0.04 ± 0.01: mean ± SE). This disruption of gap junction formation persisted, and the number of gap junctions remained constant and showed a low level from days 40 to 90 (0.11 ± 0.02 to 0.17 ± 0.02); this finding was similar in 1‐year‐old rats (0.17 ± 0.02). These observations indicate that the effect of leptin over the gap junction formation within the anterior pituitary glands was directly mediated by interaction with the functional leptin receptor present on the folliculo‐stellate cells. Microsc. Res. Tech. 77:31–36, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Since the dye- and electronic couplings between the carotid body chief cells have been demonstrated, the detection and localization of the gap junctions in the carotid body is crucial to understanding the functional mechanism of chemoreception. However, conventional electron microscopy has been unsuccessful in unquestionably detecting ultrastructural features equivalent to the gap junctions, such as close (2 nm in width) membrane appositions in ultrathin sections and aggregations of intramembranous particles in freeze-fracture replicas of the carotid body. We previously reported using a modified electron microscopic study by chemically fixed and subsequent rapid freezing and freeze-substitution method a number of close membrane appositions comparable to the gap junctions. However, we later found that the freeze-substitution also induces numerous close apposition of the membrane in sites where the gap junctions are not known to occur, indicating that the modified electron microscopy by freeze-substitution is not always confirmative in the detection of the gap junction. With regard to the molecular evidence for the gap junction in the carotid body, there have so far been few data on the immunohistochemical demonstration on connexin 32 and 43 in cultured chief cells, but not in the in situ cells.  相似文献   

3.
Rab3B is involved in the exocytosis of synaptic vesicles and secretory granules in the central nervous system and the anterior pituitary cells. The aim of this study was to elucidate both the role of rab3B in GH secretion and the mutual relationship of rab3B and SNARE proteins. Adult male rats were injected intravenously with 10 microg of growth hormone releasing hormone (GHRH) or 10 microg of somatostatin (SRIF). Untreated rats were used as controls, and their pituitary glands were sectioned for histochemical examination. Rab3B is localized on the limiting membrane of the secretory granules and the cytosol. Confocal laser scanning microscopic observation of immunohistochemical double staining of rab3B and GH revealed that immunoreactivity of rab3B increased in GHRH-treated rats and decreased in SRIF-treated rats. Confocal laser scanning microscopic observation of immunohistochemical double staining of SNAP-25, syntaxin, and rab3B revealed the co-localization of rab3B and these SNARE proteins in GHRH-treated rats, and their dissociation in SRIF-treated rats. These results suggest that rab3B plays a principal role in GH secretion in the anterior pituitary cells and that SNAP-25 and syntaxin act as co-workers with rab3B in the functional regulation of GH secretion.  相似文献   

4.
The occurrence and localization of neurotrophins and their specific TrK receptor-like proteins in the adrenal gland of chicken, duck and ostrich were examined by immunohistochemical methods. In all species studied NGF-, TrK A- and TrK C-like immunoreactivity was observed in neurons and fibers of adrenal ganglia. Thin TrK A- and TrK C-like immunoreactive fibers were also observed among chromaffin cells. NT-3-like immunoreactivity was detected in chromaffin cells as revealed by the double immunolabelings NT-3/chromogranin A and NT-3/DbetaH. The interrenal tissue never showed IR to any neurotrophins and TrK tested, and none of the adrenal structures displayed immunoreactivity to BDNF and TrK B. Double immunolabelings NGF/TrK A, NGF/TrK C and TrK A/TrK C showed colocalization in some neurons and fibers in adrenal ganglia. In adrenal glands of the species studied, the distribution of neurotrophins and TrK receptors could suggest an involvement of NT-3 on neuronal populations innervating adrenal ganglia by means of its high affinity receptor TrK C and low affinity receptor TrK A. In addition, NGF could be utilized by neuronal populations of adrenal ganglia through its preferential receptor TrK A by an autocrine or paracrine modality of action.  相似文献   

5.
    
The presently acknowledged onset of synaptogenesis in the chick retina from embryonic day 12 (E12) onward stands in contrast with the appearance of spontaneous electrical activity, of presynaptic proteins, or of neurotransmitters during early formation of the inner (E6-E8) and outer (E9) plexiform layers. Therefore, we investigated the chick retina from E6 to E12 at which age first synapses appear by transmission electron microscopy (TEM). The study provides evidence that synaptogenesis in the chick retina begins shortly after the plexiform layers have started to emerge. The first synapses are electrical synapses, which appear on E7, one day after the future inner plexiform layer emerged, and towards the end of E8 in the nascent outer plexiform layer. Conventional chemical synapses appear in both plexiform layers on E8, in the inner plexiform layer (stage 34) only a few hours earlier than in the outer plexiform layer (stage 35). The first synapses are formed close to the apex of the optic fissure and their frequency increases rapidly with age. The onset, the topography, and the developmental course of synaptogenesis correlate with the chronotopic course of maturation of retinal neurons and the age when spontaneous electrical activity occurs in the retina.  相似文献   

6.
The anterior pituitary of the rat is used as a model for the study of the effects of freezing or plastic embedding on the maintenance of antigenicity. Rat anterior pituitaries are fixed in 2.5% glutaraldehyde in 0.1 m phosphate buffer pH 7.4. Some of the blocks are post-fixed before being divided into two lots. One batch is frozen, while the other is dehydrated and embedded. The indirect antibody enzyme method is applied to ultrathin sections obtained by cryoultramicrotomy after freezing or by sectioning after embedding. All six pituitary hormones are detected by both methods. Comparison shows that the morphological characteristics are identical for both techniques, though ultrastructural preservation is better after embedding. Immunoreactivity is found in secretory granules and sometimes in the endoplasmic reticulum. Osmium postfixation may reduce or even abolish antigenicity in plastic-embedded tissue. After cryoultramicrotomy, however, even after osmium fixation, antibody may be used 1000 times more diluted than after plastic embedding. Embedding preserves ultrastructure and limited antigenicity while the use of cryoultramicrotomy is a far more sensitive technique.  相似文献   

7.
  总被引:5,自引:0,他引:5  
Adrenomedullin (AM) is hypothesized to be a physiologically relevant regulator in fluid and electrolyte homeostasis. AM acts within the central nervous system to inhibit both water and salt intake. The peptide has direct actions in the hypothalamus to decrease vasopressin secretion and in the pituitary gland to inhibit ACTH release. AM decreases production and release of aldosterone from the adrenal glands and acts directly in the kidneys to increase renal blood flow and cause diuresis and natriuresis. Whether or not these complementary actions in brain, pituitary, adrenal gland, and kidney reflect coordinated regulatory mechanisms is currently unknown. Development of molecular tools to determine the physiologic role of endogenous AM will greatly enhance our understanding of AM and its regulation of fluid and electrolyte homeostasis.  相似文献   

8.
    
This research was aimed to present the histological and ultrastructure properties of the adrenal gland in the Persian squirrel. Two male and female animals were included in the study. The adrenal gland was bean-shaped and located on the cranial pole of kidney. The enveloping capsule was dense connective tissue that reacted positively with Periodic-Acid Schiff (PAS) and Masson trichrome stainings. The parenchyma of the gland consisted of two-part, namely cortex and medulla; the cortex had three layers: zona glomerulosa (ZG), zona fasciculata (ZF), and zona reticularis (ZR). The cells of the ZG were mainly spherical and ovoid with circular arrangement and few lipid droplets in TEM micrographs. The cells of the ZF were columnar and spherical that were arranged in cord-like rows. Transmission electron microscopy (TEM) indicated conspicuous lipid droplets and mitochondria in this zone. The cells of the ZR were arranged in a tangled networks and were almost similar to those in the ZF. TEM images showed fewer lipid vesicles in the ZR compared to the ZF and ZG. Chromaffin cells were located in the medulla of the adrenal gland in two layers. TEM images showed that some of them were smaller and contained fewer secretory granules; other cells were larger and contained more electron-dense secretory granules. Immunofluorescence staining showed that steroidogenic factor 1 (SF1) expressed from cortex to the corticomedullary junction (CMJ) and tyrosine hydroxylase (TH) expressed in the medulla. In conclusion, the results indicated both similarities and differences between the adrenal gland of the Persian squirrel and other animals such as mammals and rodents.  相似文献   

9.
    
Gap junctions play an important role in differentiation of odontoblasts. Gap junction protein, connexin 43 is expressed in odontoblast. However, the detailed localization in odontoblasts has yet to be fully investigated. We investigated the localization of connexin43 in rat odontoblasts immuno‐electron microscopically. The rats were transcardially fixed with 1% paraformaldehyde in 0.1M phosphate buffer, and mandibles were decalcified with 10% ethylenediamine tetraacetic acid. Pre‐embedding method was carried out for immuno‐electron microscopic analysis. Microscopically, gap junctions were localized between bodies of odontoblasts, and between bodies and processes of odontoblasts. The gap junctions were labeled with gold particles that indicated connexin43. These results suggest that gap junctions between odontoblasts are definitely composed of connexin43 in rats, and our methods used in this study is useful to investigate localization of connexin43 immuno‐electron microscopically. Microsc. Res. Tech., 76:988–991, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
  总被引:2,自引:0,他引:2  
To better evaluate the activation and proliferative response of hepatic stellate cells (HSC) in hepatic fibrosis, it is essential to have sound quantitative data in non‐pathological conditions. Our aim was to obtain the first precise and unbiased estimate of the total number of HSC in the adult rat, by combining the optical fractionator, in a smooth sampling design, with immunocytochemistry against glial fibrillary acidic protein. Moreover, we wanted to verify whether there was sufficiently relevant specimen inhomogeneity that could jeopardize the high expected estimate precision when using the smooth fractionator design for HSC. Finally, we wanted to address the question of what sampling scheme would be advisable a priori for future studies. Microscopical observations and quantitative data provided no evidence for inhomogeneity of tissue distribution of HSC. Under this scenario, we implemented a baseline sampling strategy estimating the number (N?) of HSC as 207E06 (CV = 0.17). The coefficient of error [CE(N?)] was 0.04, as calculated by two formerly proposed approaches. The biological difference among animals contributed ? 95% to the observed variability, whereas methodological variance comprised the remaining 5%. We then carried out a half reduction of sampling effort, at the level of both sections and fields. In either occasion, the CE(N?) values were low (? 0.05) and the biological variance continued to be far more important than methodological variance. We concluded that our baseline sampling (counting 650–1000 cells/rat) would be appropriate to assess the lobular distribution and the N? of HSC. However, if the latter is the only parameter to be estimated, around half of our baseline sampling (counting 250–600 cells/rat) would still generate precise estimates [CE(N?) < 0.1], being in this case more efficient to reduce the number of sections than to reduce the sampled fields.  相似文献   

11.
    
Pituitary adenylate cyclase-activating polypeptide (PACAP), a novel peptide of the secretin/glucagon/vasoactive intestinal polypeptide superfamily, has been initially characterized in mammals in 1989 and, only 2 years later, its counterpart has been isolated in amphibians. A number of studies conducted in the frog Rana ridibunda have demonstrated that PACAP is widely distributed in the central nervous system (particularly in the hypothalamus and the median eminence) and in peripheral organs including the adrenal gland. The cDNAs encoding the PACAP precursor and 3 types of PACAP receptors have been cloned in amphibians and their distribution has been determined by in situ hybridization histochemistry. Ontogenetic studies have revealed that PACAP is expressed early in the brain of tadpoles, soon after hatching. In the frog Rana ridibunda, PACAP exerts a large array of biological effects in the brain, pituitary, adrenal gland, and ovary, suggesting that, in amphibians as in mammals, PACAP may act as neurotrophic factor, a neurotransmitter and a neurohormone.  相似文献   

12.
文中介绍了定位胶结构定位这种新型的定位形式,并与机床行业中传统的定位方式进行比较。通过具体的用胶案例分析,比较了不同定位方式对机床某些性能参数的影响,充分论证了高精度定位胶结构定位在机床装配中的优势所在。  相似文献   

13.
The present study correlates the ultrastructural morphology of junctional complexes as revealed by transmission electron microscopy (TEM) with that observed by high-resolution scanning electron microscopy (HRSEM), thanks to a new modification of the osmium tetroxide maceration technique. The removal of all cytoplasmic organelles by this technique allows the inspection of the inner side of the plasmalemma. With this treatment, a continuous band of tightly packed particles is observed at the most apical portion of lateral membranes. Just below this band, irregular clusters of apparently identical particles are placed all around the cellular contour. The topographical correspondence among these clusters and spot desmosomes seen by TEM identifies them as desmosomes. The continuous band seems to represent the combination of both zonulae, occludens and adherens. Regarding the nature of the particles, we suppose that they probably consist of peripheral membrane proteins clustered at the cytoplasmic surface of intercellular junctions and involved in the linkage between cytoskeleton and plasmalemma.  相似文献   

14.
段长江 《衡器》2014,(1):48-49
本文主要以举例的方式介绍电子汽车衡常见故障及排除方法,再从实际工作出发如何去预防故障的发生。  相似文献   

15.
    
Background: Activated hepatic stellate cells (HSCs) are closely involved in the initiation, perpetuation, andresolution of liver fibrosis. Pro-inflammatory cytokine levels are positively correlated with the transition from liverinjury to fibrogenesis and contribute to HSC pathophysiology in liver fibrosis. Methods: In this study, we investigatedthe effect of the pro-inflammatory cytokine interleukin (IL)-1β on the proliferation and signaling pathways involvedin fibrogenesis in LX-2 cells, an HSC cell line, using western blotting and cell proliferation assays. Results: IL-1βincreased the proliferation rate and α-smooth muscle actin (SMA) expression of LX-2 cells in a dose-dependentmanner. Within 1 h after IL-1β treatment, c-Jun N-terminal kinase (JNK), p38, and nuclear factor-κB (NF-κB)signaling was activated in LX-2 cells. Subsequently, protein kinase B (AKT) phosphorylation and an increase in α-SMA expression were observed in LX-2 cells. Each inhibitor of JNK, p38, or NF-κB decreased cell proliferation, AKTphosphorylation, and α-SMA expression in IL-1β-treated LX-2 cells. Conclusion: These results indicate that JNK,p38, and NF-κB signals converge at AKT phosphorylation, leading to LX-2 activation by IL-1β. Therefore, the AKTsignaling pathway can be used as a target for alleviating liver fibrosis by the inflammatory cytokine IL-1β.  相似文献   

16.
In this paper, we experimentally demonstrated a two-channel frequency division multiplexing confocal fluorescence microscopy system using a UV laser as the excitation source. In our two-channel frequency division multiplexing confocal fluorescence system, the incoming laser beam was divided into two beams and each beam was modulated with an individual carrier frequency. These two laser beams were then spatially combined with a small angle and focused into two diffraction-limited spots on the targeted cell (rat neural cell) surface to generate fluorescent signal. As a result, the fluorescent signals from two spots of the rat neural cell surface can be demodulated and distinguished during data processing. Furthermore, a quantitative analysis on the cross-talk among different frequencies was provided as well. The experimental results confirm that the two-channel frequency division multiplexing confocal fluorescence technology can not only maintain the high spatial resolution, but also realize the multiple points detection simultaneously with high temporal resolution (within millisecond level range), which benefits the dynamic studies of living biological cells.  相似文献   

17.
Dark-adapted carp retinas were fixed with glutaraldehyde, frozen in liquid nitrogen slush, and their complementary replicas were harvested using a bipolar-vacuum evaporater. On montage pictures, plasmic (PFF) and ectoplasmic fracture faces (EFF) of the external horizontal cells (EHC) were marked, and PFF of gap junction (GJ) areas were scrutinized by virtue of particulate aggregation visible at relatively low magnification. Summation of digitized values obtained from a complementary pair of replicas was taken to represent all existent GJ areas in an examined EHC surface. A similar method was applied to large horizontal processes (LHP) that are located in the inner-most part of the internal nuclear layer and currently accepted to be extensions of EHC. The occurrence of fractured faces of plasma membrane was smaller in EHC than LHP. The percentage of GJ areas was about ten times larger in EHC than LHP. Examining complementary replicas at relatively low magnification appears to be useful for facilitating quantitative analysis of intercellular coupling by GJ structures.  相似文献   

18.
  总被引:1,自引:0,他引:1  
Magnocellular neurons located in the supraoptic nucleus send their principal axons to terminate in the neurohypophysis, where they release vasopressin and oxytocin into the blood circulation. This magnocellular hypothalamo-neurohypophysial system is known to undergo dramatic activity-dependent structural plasticity during chronic physiological stimulation, such as dehydration and lactation. This structural plasticity is accompanied not only by synaptic remodeling, increased direct neuronal membrane apposition, and dendritic bundling in the supraoptic nucleus, but also organization of neurovascular contacts in the neurohypophysis. The adjacent glial cells actively participate in these plastic changes in addition to magnocellular neurons themselves. Many molecules that are possibly concerned with dynamic structural remodeling are highly expressed in the hypothalamo-neurohypophysial system, although they are generally at low expression levels in other regions of adult brains. Interestingly, some of them are highly expressed only in embryonic brains. On the basis of function, these molecules are classified mainly into two categories. Cytoskeletal proteins, such as tubulin, microtubule-associated proteins, and intermediate filament proteins, are responsible for changing both glial and neuronal morphology and location. Cell adhesion molecules, belonging to immunoglobulin superfamily proteins and extracellular matrix glycoproteins, also participate in neuronal-glial, neuronal-neuronal, and glial-glial recognition and guidance. Thus, the hypothalamo-neurohypophysial system is an interesting model for elucidating physiological significance and molecular mechanisms of activity-dependent structural plasticity in adult brains.  相似文献   

19.
Microwave (MW) fixation methods are important because excellent preservation of both cell structure and antigenicity can be attained several orders of magnitude faster than by routine chemical fixation methods. However, because of the limitations of commercial MW ovens, fixation results are often irreproducible. We present a standardization protocol for MW fixation in household MW ovens that emphasizes magnetron warm-up; the use of a water load during sample irradiation, of an agar/saline/Giemsa model to evaluate uniformity of irradiation within the MW cavity, and of specimen containers with one dimension less than 1.5 cm; and fast specimen handling to prevent conductive heating artifacts after irradiation. We describe a prototypic MW device that improves the precision of sample irradiation and fixes blocks of tissue and cells in suspension in milliseconds. The solutions used to immerse the specimen during irradiation influence the specimen morphology. Aldehyde- or osmium-containing solutions used simultaneously with MW irradiation resulted in the best morphologic preservation of specimens up to 1 cm3. Using MW fixation methods and a postembedding, ultrastructural immunogold-labeling approach, we have localized granule chymase and histamine in rat mast cells and amylase in rat parotid acinar cells.  相似文献   

20.
Intercellular junctions are fundamental to the interactions between cells. By means of these junctions, the activities of the individual cells that make up tissues are co-ordinated, enabling each tissue system to function as an integrated whole. In this review, the work of the authors on one specific type of junction—the cardiac gap junction—is presented as a case model to illustrate how the application of a range of microscopical methods, as part of a multidisciplinary approach, can help extend our understanding of cell junctions and their functions. In the heart, gap junctions form the low-resistance pathways for rapid impulse conduction and propagation, enabling synchronous stimulation of myocyte contraction. Gap junctions also form pathways for direct intercellular communication, a function of particular importance for morphogenetic signalling during development. The work discussed demonstrates some of the applications of techniques in electron microscopy, immunocytochemistry and confocal scanning laser microscopy to the understanding of the structural basis of the function of gap junctions in the normal adult heart, the developing heart and the diseased heart. Freeze-fracture electron microscopy of heart tissue prepared by rapid freezing techniques, in which excision-related structural damage to the cells is minimized or avoided, makes it possible to deduce the structure of the functioning gap junction in vivo. Gap junctions in hearts that are beating normally in the living animal until the very instant of freezing consist of connexons (transmembrane channels) organized in a quasicrystalline arrangement, not a ‘random’ arrangement as proposed in the original hypothesis on the structural correlates of gap junction function. Alterations in connexon arrangement occur in response to ischaemia and hypoxia, though the relationship of these to gap-junctional permeability is indirect. To obtain probes for mapping the distribution of gap junctions in cardiac tissue, polyclonal antisera to synthetic peptides matching portions of the sequence of connexin43, the major gap-junctional protein reported in the heart, were raised. The specificity of the antisera was confirmed by dot blotting, Western blotting and by immunogold labelling of isolated gap junctions. One antiserum (that raised to residues 131–142) was found to be particularly effective as a cytochemical probe. An immunofluorescence labelling procedure for use with confocal scanning laser microscopy was developed to enable the three-dimensional precision mapping of gap junctions through thick slices of cardiac tissue. By exploiting the serial optical sectioning ability of the confocal microscope, we have succeeded in (1) elucidating the organization of gap junctions at the intercalated disc, (2) establishing temporal and spatial patterns of gap-junctional protein expression in embryogenesis that correlate with functional differentiation in subsets of cardiac cells, and (3) demonstrating abnormalities of gap-junction distribution and quantity that may contribute to the genesis of arrhythmias in ischaemic heart disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号