共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, the effects of Cu and CuO nanoparticles' presence on mixed convection heat transfer in a lid‐driven cavity with a corrugated wall are investigated using the lattice Boltzmann method. The boundary fitting method with second‐order accuracy at both velocity and temperature fields is used to simulate the curved boundaries in the LBM. The problem is investigated for different Richardson numbers (0.1–10), volume fractions of nanoparticles (0–0.05), curve amplitudes (0.05–0.25), and phase shifts of corrugated wall (0–270) when the Reynolds number is equal to 25. The volume fraction of added nanoparticles to the water‐based fluid is less than 0.05 to make dilute suspensions. Results show that adding nanoparticles enhances the rate of heat transfer. It is found that nanoparticles have significant effects on both fluid flow and heat transfer of the mixed convection, especially for low Richardson numbers. A comparison between Cu and CuO nanoparticles shows the Cu nanoparticles have a better effect on heat transfer enhancement for all tested conditions. The results also represent the effective role of a corrugated wall on the rate of nanofluid heat transfer. It is observed that increasing the wavy wall's amplitude leads to a decrease of the average Nusselt numberfor a high Richardson number. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21024 相似文献
2.
A numerical study is presented about the effect of a uniform magnetic field on free convection in a horizontal cylindrical annulus using the lattice Boltzmann method. The inner and outer cylinders are maintained at uniform temperatures and it is assumed the walls are insulating with a magnetic field. Detailed numerical results of heat transfer rate, temperature, and velocity fields have been presented for Pr=0.7, Ra=103 to 5 × 104, and Ha=0 to 100. The computational results show that in a horizontal cylindrical annulus the flow and heat transfer are suppressed more effectively by a radial magnetic field. It is also found that the flow oscillations can be suppressed effectively by imposing an external radial magnetic field. The average Nusselt number increases by increasing the radius ratio while it decreases by increasing the Hartmann number. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21008 相似文献
3.
In the present study, the effect of inclination on mixed convection heat transfer and fluid flow in a lid‐driven cavity with a wavy wall is investigated using the lattice Boltzmann method. The double‐population approach with second‐order accuracy at velocity and temperature fields is used to simulate the curved boundary in the lattice Boltzmann method. The problem is investigated for different Richardson numbers (0.1 ≤ Ri ≤ 10), curve amplitudes (0.05 ≤ A ≤ 0.25), and inclination angles (0 ≤ θ ≤ 180) when the Reynolds number is equal to 100. Results show that the inclination phenomenon has important effects on both flow and temperature fields at high Richardson numbers. It is also found that the inclination loses its role on mixed convection heat transfer from the wavy wall by the increase of the curve amplitude of the wavy wall for all Richardson numbers. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21005 相似文献
4.
This study is aimed to investigate the natural convection heat transfer from discrete heat sources (similar to heated microchips) using Bhatnagar‐Gross‐Krook lattice Boltzmann method via graphics process unit computing. The simulation is carried out separately for three and six heated blocks model for different Rayleigh numbers and fixed Prandtl number, (air). The uniformly heated blocks are placed at the bottom wall inside a rectangular enclosure. The enclosure is maintained by the cold temperature at its left and right walls. The top and bottom surface is maintained by adiabatic conditions apart from the regions where blocks are attached to the bottom wall. The numerical code is validated with the benchmark heat transfer problem of side‐heated square cavity as well as with an experimental study for one discrete heat source. The rate of heat transfer is presented in terms of the local Nusselt and average Nusselt number for each block. It is found that the heat transfer rate becomes maximized in the leftmost and rightmost blocks due to the adjacent cold walls. It is found that the number of blocks and their positions play a substantial role in determining their collective performance on the heat transfer rate. 相似文献
5.
A.A. Mohamad M. El-Ganaoui R. Bennacer 《International Journal of Thermal Sciences》2009,48(10):1870-1875
Natural convection in an open ended cavity is simulated using Lattice Boltzmann Method (LBM). The paper is intended to address the physics of flow and heat transfer in open end cavities and close end slots. The flow is induced into the cavity by buoyancy force due to a heated vertical wall. Also, the paper demonstrated that open boundary conditions used at the opening of the cavity is reliable, where the predicted results are similar to conventional CFD method (finite volume method, FVM) predictions. Prandtl number (Pr) is fixed to 0.71 (air) while Rayleigh number (Ra) and aspect ratio (A) of the cavity are changed in the range of 104–106 and of 0.5–10, respectively. It is found that the rate of heat transfer deceases asymptotically as the aspect ratio increases and may reach conduction limit for large aspect ratio. The flow evaluation in the cavity starts with recirculation inside the cavity, as the time proceeds the flow inside the cavity communicates with the ambient. 相似文献
6.
The mixed convection fluid flow in a square cavity filled with AL2O3‐water non‐Newtonian nanofluid is numerically analyzed. The left and right vertical boundaries of the enclosure have been kept in the constant temperature. Remaining walls of the cavity have been considered to have adiabatic boundary condition. Two different cases have been considered. In the first case, left and right side walls have been moved vertically with constant speed Vb in opposite directions. In the second case, the directions of their motions have been reversed. The transport equations, written in terms of the primitive variables for the non‐Newtonian nanofluid, have been solved numerically using the finite volume method. The shear stresses were calculated using the Ostwald‐de Waele model for the shear‐thinning nanofluid. The model introduced by Patel et al was used to obtain the thermal conductivity of the nanofluid. The variation of the fluid flow with respect to the Richardson number and volume fraction of the nanoparticles was investigated through a parametric study. Even though increasing the volume fraction of nanoparticles leads to heat transfer enhancement, for the second case of this study, for Ri = 1, the average Nusselt number initially drops sharply by increasing the volume fraction of nanoparticles, then remains constant. 相似文献
7.
The main purpose of this study is to numerically investigate the Prandtl number effect on mixed convection in a horizontal channel heated from below using the thermal lattice Boltzmann method (TLBM). The double-population model with two different lattices is used, in particular, the D2Q9 for the velocity field and D2Q5 for the thermal field. The developed lattice Boltzmann method code to simulate the fluid flow and heat transfer in the channel was validated with available literature results based on classical numerical methods, especially the finite volume method for Pr = 6.4 and the finite difference method for Pr = 0.667. The results obtained with the TLBM have shown good agreement with the conventional methods cited. The dynamic and thermal characteristics of the fluid flow were examined in the field of low Prandtl number, such that 0.05 ≤ Pr ≤ 0.667, and also compared to Pr = 6.4; for Ra = 2420 and 7400, the Reynolds number was fixed at 1. The results showed that the influence is relatively significant for the dynamic structure of flow convection for Pr ≤ 0.3 and is little influential beyond this value. 相似文献
8.
This paper investigates the heat and mass transfer under magnetohydrodynamic mixed convection flow of a binary gas mixture in a four-sided lid-driven square cavity. The enclosure's left wall is sinusoidally heated and acts as a source term, while the right wall functions as a sink. The cavity's horizontal walls are adiabatic and impermeable to mass transfer. The governing equations under Boussinesq approximation and stream function-vorticity formulation are solved using the alternating-direction-implicit scheme, a finite-difference method. The numerical scheme's consistency and stability are demonstrated using the matrix method. The MATLAB code is written, validated against some existing studies, and used to perform numerical simulations. The numerical solutions are graphically examined by visualizing the streamline, isotherm, and concentration contours for nondimensional parameters, such as Hartmann number , heat absorption or generation coefficient , Richardson number , and buoyancy ratio . The magnetic field modifies the temperature and concentration distribution in the cavity, depending on the convection mode. The magnetic field forces the fluid to stagnate in different regions of the cavity, depending on the mode of convection. It was found that the difference between the maximum and minimum temperature and concentration at the cavity's midpoint increases up to 13 and 10 times, respectively, in the natural convection compared with the forced convection. The average Nusselt number on the vertical walls of the cavity is maximum in natural convection in the absence of a magnetic field but reaches a minimum value at in forced and mixed convection. The average Sherwood number on the cavity's vertical walls decreases with the magnetic field in mixed and natural convection. 相似文献
9.
Analysis of three dimensional natural convective lid‐driven cavity flow is carried out numerically. The top wall is assumed to slide in its own plane at a constant speed. Isothermal temperature is maintained at horizontal walls in which the bottom wall is assumed to be at a higher temperature than the top wall. Governing equations of this problem, expressed in dimensionless form are solved by using the finite volume method. Numerical results are computed for the control parameters arising in the system, namely, the Reynolds number (Re) and Richardson number (Ri) in the range of 100 ≤ Re ≤ 1000 and 0.001 ≤ Ri ≤ 10. The contours of isotherms, streamlines, Vortex corelines, energy pathlines, and field synergy are used to visualize the flow and thermal characteristics. The simulated results are corroborated with those available in the literature. When Re = 100 and 400 with growth of Ri there are "free" energy streamlines and they exhibited symmetric nature near the boundaries. The participation of convective thermal energy and kinetic energy is insignificant compared to conductive thermal energy, where the velocity components are modest. When Re = 1000 with increase of Ri, "trapped" energy streamlines are detected. Energy streamlines occupy substantial part. This is due to the result of high Re, with increasing Ri, kinetic energy and convective thermal energy get dominated and hence "trapped" streamlines formed. As Re increases, synergy angle increases for distinct Ri values. So the synergy between temperature and velocity gets worse. The synergy angle of buoyant‐aiding flow is high while the buoyant‐opposing flow is significantly less than that of forced convection flow when Ri = 1. This gives the relation between temperature field and velocity at buoyant‐aiding flow, which is at the worst situation leading to increasing average Nusselt number. 相似文献
10.
Lattice Boltzmann Simulation of Natural Convection in a Square Cavity with Linearly Heated Wall(s) 下载免费PDF全文
In this study, the lattice Boltzmann method is used in order to investigate the natural convection in a cavity with linearly heated wall(s). The bottom wall is heated uniformly and the vertical wall(s) are heated linearly, whereas the top wall is insulated. Investigation has been conducted for Rayleigh numbers of 103 to 105, while Prandtl number is varied from 0.7 to 10. The effects of an increase in Rayleigh number and Prandtl number on streamlines, isotherm counters, local Nusselt number and average Nusselt number are depicted. It has been observed that the average Nusselt number at the bottom wall augments with an increase in Prandtl number. 相似文献
11.
A numerical simulation is performed to characterize the mixed convective transport in a three‐dimensional square lid‐driven enclosure with two rotating cylinders. The top wall is moving in the positive x‐direction, and the bottom wall is at a higher fixed temperature compared with all other isothermal walls. Both cylinders are rotating in its own plane about their centroidal axis. On the basis of rotation of both cylinders in clockwise or counter‐clockwise directions, four rotational models are studied. Various controlling parameters considered in the present study are Grashof number (10 3 < Gr < 10 5), rotating speed of the cylinder (5 < ω < 50), and the Reynolds number based on top wall movement is fixed to 100. The effect of cylinder rotation on the heat transfer of bottom wall is reported with the help of streamlines, contour plots of z‐component of vorticity, averaged and local Nusselt number, ratios of secondary flow and drag coefficient. It is observed that the heat transfer at the bottom wall is substantially dependent on the rotational model and rotational speed of the cylinder. 相似文献
12.
A numerical study following the lattice Boltzmann method (LBM) is performed to solve transient heat conduction problems with and without volumetric heat generation/absorption in 2D and 3D Cartesian geometries. Uniform lattices are considered for both geometries. To validate the correctness of LBM, a finite difference method (FDM) is also used to solve the 2D problem without heat generation/absorption and results are compared with that of LBM. For both 2D and 3D geometries one of the walls is heated and cooled with a sinusoidal function and the rest of the walls are cooled isothermally. Effects of amplitude of the sinusoidal function and volumetric heat generation/absorption on temperature profiles are analyzed. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20406 相似文献
13.
14.
A. Haghshenas M. Rafati NasrM.H. Rahimian 《International Communications in Heat and Mass Transfer》2010
In the present work, natural convection in an open-ended square cavity packed with porous medium is simulated. The double-population approach is used to simulate hydrodynamic and thermal fields, and the Taylor series expansion and the least-squares-based lattice Boltzmann method has been implemented to extend the thermal model. The effect of a porous medium is taken into account by introducing the porosity into the equilibrium distribution function and adding a force term to the evolution equation. The Brinkman–Forchheimer equation, which includes the viscous and inertial terms, is applied to predict the heat transfer and fluid dynamics in the non-Darcy regime. The present model is validated with the previous literature. A comprehensive parametric study of natural convective flows is performed for various values of Rayleigh number and porosity. It is found that these two parameters have considerable influence on heat transfer. 相似文献
15.
GH.R. KefayatiS.F. Hosseinizadeh M. Gorji H. Sajjadi 《International Communications in Heat and Mass Transfer》2011,38(6):798-805
Natural convection in enclosures using water/SiO2 nanofluid is simulated with Lattice Boltzmann method (LBM). This investigation compared with other numerical methods and found to be in excellent agreement. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of base fluid, Ra = 103-105, the volumetric fraction of nanoparticles between 0 and 4% and aspect ratio (A) of the enclosure between 0.5 and 2. The thermal conductivity of nanofluids is obtained on basis of experimental data. The comparisons show that the average Nusselt number increases with volume fraction for the whole range of Rayleigh numbers and aspect ratios. Also the effect of nanoparticles on heat transfer augments as the enclosure aspect ratio increases. 相似文献
16.
MHD Turbulent and Laminar Natural Convection in a Square Cavity utilizing Lattice Boltzmann Method 下载免费PDF全文
In this study, the lattice Boltzmann method was used to solve the turbulent and laminar natural convection in a square cavity. In this paper a fluid with Pr = 6.2 and different Rayleigh numbers (Ra = 103, 104,105 for laminar flow and Ra = 107, 108,109 for turbulent flow) in the presence of a magnetic field (Ha = 0, 25, 50, and 100) was investigated. (Results show that the magnetic field drops the heat transfer in the laminar flow as the heat transfer behaves erratically toward the presence of a magnetic field in a turbulent flow. Moreover, the effect of the magnetic field is marginal for a turbulent flow in contrast with a laminar flow.The greatest influence of the magnetic field is observed at Ra = 105 from Ha = 0 to 100 as the heat transfer decreases significantly. 相似文献
17.
In the present study, an attempt is made to explore the flow visualization techniques inside the bottom heated lid–driven square cavity. The governing equations along with boundary conditions are solved numerically. The convection differencing schemes namely, upwind difference, quadratic upstream interpolation for convective kinetics, Superbee, and self‐filtered central differencing schemes are discussed and are used to simulate the flow using message passing interface (MPI) code. An attempt has been made to analyze the flow behavior inside the cavity using streamlines, isotherms energy streamlines, and field synergy by varying the Reynolds number (Re) and Richardson number (Ri). The simulated results (100≤ Re ≤ 1000 and 0.001≤ Ri ≤ 10) are validated with previous results in literature. It is observed that the computational cost for all the differencing schemes gets reduced tremendously when the MPI code is implemented. Flow becomes quasi‐two‐dimensional for Ri < 1. Overall, Nusselt number increases mildly with cavity inclination for the forced convection–dominated case (Ri = 0.1) while it increases much more rapidly with inclination for natural convection–dominated case (Ri = 10). 相似文献
18.
E. Fattahi M. Farhadi K. Sedighi 《International Communications in Heat and Mass Transfer》2011,38(8):1135-1141
Mixed convection heat transfer in eccentric annulus was simulated numerically by lattice Boltzmann model (LBM) based on multi-distribution function double-population approach. The effect of eccentricity on heat transfer at various locations was examined at Ra = 104 and σ = 2. Velocity and temperature distributions as well as Nusselt number are obtained. The results are validated with published results and shown that multi-distribution function approach can evaluate the velocity and temperature fields in curved moving boundaries with a good accuracy in comparison with the previous studies. The results show that the average Nusselt number increases when the inner cylinder moves downward regardless of the radial position. 相似文献
19.
H. Nemati M. FarhadiK. Sedighi E. FattahiA.A.R. Darzi 《International Communications in Heat and Mass Transfer》2010
Lattice Boltzmann Method is applied to investigate the mixed convection flows utilizing nanofluids in a lid-driven cavity. The fluid in the cavity is a water-based nanofluid containing Cu, Cuo or Al2O3 nanoparticles. The effects of Reynolds number and solid volume fraction for different nanofluids on hydrodynamic and thermal characteristics are investigated. The effective thermal conductivity and viscosity of nanofluid are calculated by Chon and Brinkman models, respectively. The results indicate that the effects of solid volume fraction grow stronger sequentially for Al2O3, Cuo and Cu. In addition the increases of Reynolds number leads to decrease the solid concentration effect. 相似文献
20.
A numerical investigation of steady‐natural convection of an electrically conducting fluid, enclosed in a tilted square cavity, subjected to a uniform magnetic field applied perpendicular to the plane of cavity is presented. A comprehensive understanding of the effects of controlling parameters on the flow and heat transfer is delineated for a wide range of parameters. Correlations for the average Nusselt number are presented specifically for fluids with low Prandtl numbers pertaining to liquid metals. It is made known that when the applied magnetic field is perpendicular to the plane of the cavity, the magneto hydrodynamic drag is greatest as compared to any other direction of the applied magnetic field and consequently the suppression of convection is also at its maximum, irrespective of all other controlling parameters. 8 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20326 相似文献