首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-dimensional explicit elastic solution is derived for a brittle film bonded to a ductile substrate through either a frictional interface or a fully bonded interface, in which periodically distributed discontinuities are formed within the film due to the applied tensile stress in the substrate and consideration of a “weak form stress boundary condition” at the crack surface. This solution is applied to calculate the energy release rate of three-dimensional channeling cracks. Fracture toughness and nominal tensile strength of the film are obtained through the relation between crack spacing and tensile strain in the substrate. Comparisons of this solution with finite element simulations show that the proposed model provides an accurate solution for the film/substrate system with a frictional interface; whereas for a fully bonded interface it produces a good prediction only when the substrate is not overly compliant or when the crack spacing is large compared with the thickness of the film. If the section is idealized as infinitely long, this solution in terms of the energy release rate recovers Beuth’s exact solution for a fully cracked film bonded to a semi-infinite substrate. Interfacial shear stress and the edge effect on the energy release rate of an asymmetric crack are analyzed. Fracture toughness and crack spacing are calculated and are in good agreement with available experiments.  相似文献   

2.
In the present work, we predict contribution of a partially debonded circular inhomogeneity into the material overall elastic compliance. Debonding at the matrix/inclusion boundary is modeled as interfacial arc cracks. The change in the elastic compliance caused by interface cracking is estimated through the accompanying energy change that is related to the mode I and mode II stress intensity factors at the crack tips. The sum of the crack compliance and the inhomogeneity compliance (with perfect bonding) gives the total compliance of the debonded inhomogeneity. The latter is obtained in terms of the material properties and crack length. Additional analysis shows that the replacement of an interface crack with a crack in a homogenized medium is an inadequate approach when seeking approximate solutions. The paper also provides guidelines how to determine properties of a fictitious perfectly bonded orthotropic inhomogeneity that has the same contribution into the material compliance as the debonded isotropic one. This problem is of practical importance when modeling damage accumulation in composite materials by means of homogenization schemes.  相似文献   

3.
碳化硅纤维增强碳化硅复合材料(SiC/SiC)是极具前景的高温结构材料。通过先驱体浸渍裂解(PIP)工艺分别制备了PyC界面和CNTs界面SiC/SiC复合材料, 对两种SiC/SiC复合材料的整体力学性能以及界面剪切强度等进行了测试表征, 并对材料中裂纹的产生与扩展进行了原位观测。结果表明, 两种界面SiC/SiC复合材料弯曲强度相近, 但PyC界面SiC/SiC复合材料的断裂韧性约为CNTs界面SiC/SiC复合材料的两倍。在PyC界面SiC/SiC复合材料中, 裂纹沿纤维-基体界面扩展, PyC涂层能够偏转或阻止裂纹, 材料呈现伪塑性断裂特征; 而在CNTs界面SiC/SiC复合材料中, 裂纹在扩展路径上遇到界面并不偏转, 初始裂纹最终发展为主裂纹, 材料呈现脆性断裂模式。  相似文献   

4.
This work extends the analytical solution of an interface crack in straight layered structures to circular layered structures. A small segment at the vicinity of an interface crack tip in a circular laminated beam is analyzed by a novel shear deformable bi-layered circular beam theory. Two concentrated forces are found existing at the crack tip due to the requirement of the equilibrium condition. Closed-form solution of the total energy release rate of the interface crack is obtained as the half of the product of the concentrated forces and the corresponding displacement gradient discontinuities at the crack tip. Closed-form expressions of the mode I and II components of the energy release rate are also obtained by global and local methods. Numerical verifications are conducted by analyzing the interlaminar delamination of a circular beam with an edged crack and comparing with the baseline results obtained through finite element analysis. Excellent agreements between the present method and finite element analysis on the predictions of total energy release rate and mode partition verify the accuracy and efficiency of the present solution.  相似文献   

5.
In this paper, the fracture mechanics problem for an arbitrarily oriented crack crossing the interface in a functionally graded layered structure is investigated. The elastic modulus is assumed to be continuous at the interface, but its derivative may be discontinuous. Applying the superposition principle and Fourier integral transform, the stress fields and displacement fields are derived. A group of auxiliary functions defined in both layers are introduced and then the mixed-mode crack problem is turned into solving a group of singular integral equations. The mixed-mode stress intensity factors (SIFs) are obtained by solving the singular integral equations. The influences of the material nonhomogeneity parameter, normalized crack length and crack angle on the SIFs are investigated. It is found that the mixed-mode SIFs can be affected greatly by the crack angle. Moreover, the mixed-mode SIFs usually attain their extremum when the crack tips get to the interface during one crack moves from one layer into another layer. The present work may form the basic work for establishing a multi-layered fracture mechanics model of FGMs with an arbitrarily oriented crack and general mechanical properties.  相似文献   

6.
To quantify the growth behaviour of fatigue cracks growing towards microstructural barriers or elastic obstacles, parametric solutions are obtained for crack-tip opening displacement and plasticity-induced crack closure of a mode I fatigue crack growing towards elastic obstacles. Three common bi-material systems are analysed using the finite element method, in which both constituent materials have identical elastic properties but only the phase that contains the crack can deform plastically. It has been found that under monotonic loading the crack-tip opening displacement decreases as the crack-tip approaches the interface boundary, but reaching a non-zero value when the crack-tip terminates at the boundary. For a fatigue crack growing under constant amplitude loading, the crack-closure stress has been found to increase as the crack grows towards the barrier. Based on these results a mechanistic model is proposed to quantify the influence of stress level on the fatigue threshold of microstructurally small fatigue cracks, with predictions being in close agreement with experimental data.  相似文献   

7.
The problem of a crack normal to and terminating at an interface in two joined orthotropic plates is considered and the eigenequation for the asymptotic behavior of stresses at the crack tip on the interface is given in an explicit form. It is found that the singular stress field around the crack tip can be separated into two independent fields, respectively of the mode I and II. Also it is found that for both the mode I and II deformations the effects of elastic constants on the stress singularity order can be respectively expressed by three material parameters, two of which are the same for both the mode I and mode II deformations.  相似文献   

8.
This paper presents the numerical study of the mode I and mode II interlaminar crack growth arrest in hybrid laminated curved composite stiffened joint with Z-fibre reinforcement. A FE model of hybrid laminated skin-stiffener joint reinforced with Z-pins is developed to investigate the effect of Z- fibre pins on mode I and mode II crack growth where the delamination is embedded inbetween the skin and stiffener interface. A finite element model was developed using S4R element of a 4-node doubly curved thick shell elements to model the composite laminates and non linear interface elements to simulate the reinforcements. The numerical analyses revealed that Z-fibre pinning were effective in suppressing the delamination growth when propagated due to applied loads. Therefore, the Z-fibre technique effectively improves the crack growth resistance and hence arrests or delays crack growth extension.  相似文献   

9.
We consider here a bi-material made of two layers bonded together by an interface. The specimen is loaded in tension parallel to the interface and the existence of a mode I crack is assumed. The crack initiated in just one layer reaches the interface normally. We then study the second of the two possible cases: the crack crosses the interface and goes straight into the second layer, in mode I also; or the crack debonds the interface before reinitiating in the second layer at the debond tip.In the present study the conditions of the reinitiation of the crack in the second layer after debonding of the interface are presented. The maximum debond distance is calculated by means of a Shear Lag analysis associated with a damage constitutive equation.Qualitative rules for design are pointed out to make the interface a location of crack arrest or at least of crack growth delay. These rules are mainly: small thickness of the possibly cracked layer, strong interface and tough substrate.  相似文献   

10.
Asymmetric four point bend specimens are often used for determination mode II fracture toughness. Different corrections were proposed to classical solution of Stress Intensity Factors for this specimen. This paper provides a solution for a bi-material four point specimen with sub-interface crack. The solutions were obtained using Finite Element Analysis, and the effect of crack distance to interface, crack length and materials combination were investigated.  相似文献   

11.
A fracture mechanics based analysis of interface bond failure is presented. The bond edge is regarded as an interface crack front loaded under combined mode 1, 2 and 3 loading, and results are obtained for the critical stress for initiation of bond failure and the location along the bond edge where failure is initiated. A numerical procedure is formulated to study the propagation of the interface crack following initiation. Assuming that the crack propagates at the interface, a criterion for propagation is formulated, and it is shown that the crack front shape predicted is consistent with the basic interface fracture mechanics assuming quasi-static crack propagation. Results for the bond strength are presented for different fracture criteria and different bond shapes.  相似文献   

12.
The two-dimensional problem of a crack lying along the interface of an elliptic rigid inclusion embedded in an infinite elastic matrix is theoretically studied. Based on the complex variable method of Muskhelishvili, closed form solutions of the stresses and displacements around the crack are obtained when both general biaxial loads at infinity and uniform normal internal pressure are applied. These solutions are then combined with the virtual work argument of Griffith to give a criterion of the crack extension, namely the growth of the debonding of the interface. The critical applied loads are expressed explicitly by a function of four parameters; the size, the ratio of the length of the minor axis to that of the major axis of the inclusion, the angle subtended by the crack arc and the polar angle of the middle point of the crack arc. It is shown that when the applied load is only a simple tension or only an internal pressure the critical load is inversely proportional to the square-root of the size of the inclusion. The variations of the critical load with the angle subtended by the crack arc and with the ratio of the length of the semi-axes are graphically shown and discussed.  相似文献   

13.
Dynamic crack propagation in a unidirectional carbon/epoxy composite is studied through finite element analyses of asymmetric impact (shear loading) of a rod against a rectangular plate. A finite deformation anisotropic visco-plastic model is used to describe the constitutive response of the composite. Crack propagation is simulated by embedding zero thickness interface element along the crack path. An irreversible mixed-mode cohesive law is used to describe the evolution of interface tractions as a function of displacement jumps. Contact and friction behind the crack tip are accounted for in the simulations. The failure of the first interface element at the pre-notch tip models onset of crack extension. Crack propagation is modeled through consecutive failure of interface elements. The dynamic crack propagation phenomenon is studied in terms of crack initiation time, crack speed, mode I and mode II displacement jumps and tractions associated with the failure of interface elements, effective plastic strain at the crack tip and path independent integral J. Analyses are carried out at impact velocities of 5, 10, 20, 30 and 40 m/s, assuming the crack wake is frictionless. Moreover, analyses at impact velocities of 30 and 40 m/s are also carried out with a friction coefficient of 0.5, 1, 5 and 10 along the crack surfaces. The analyses show that steady-state intersonic crack propagation in fiber reinforced composite materials occurs when the impact velocity exceeds a given threshold. A steady-state crack speed of 3.9 times the shear wave speed and 83% of the longitudinal wave speed is predicted in the cases in which the impact velocity is above 10 m/s. Detailed discussion is given on the features of sub-sonic and intersonic crack propagation. It is shown that friction effects, behind the crack tip, do not have a significant effect on maximum crack speed; however, they do on characteristics of the shock wave trailing the crack tip. The analyses also show that the contour integral J, computed at contours near the crack tip, is indeed path independent and can serve as a parameter for characterizing intersonic crack propagation.  相似文献   

14.
Typical bimaterial interfaces are non-planar due to surface facets or roughness. Crack-tip stress fields of an interface crack must be influenced by non-planarity of the interface. Consequently, interface toughness is affected. In this paper, the crack-tip fields of a finite crack on an elastic/rigid interface with periodic undulation are studied. Particular emphasis is given to the fracture mechanics parameters, such as the stress intensity factors, crack-tip energy release rate, and crack-tip mode mixity. When the amplitude of interface undulation is very small relative to the crack length (which is the case for rough interfaces), asymptotic analysis is used to convert the non-planarity effects into distributed dislocations located on the planar interface. Then, the resulting stress fields near the crack tip are obtained by using the Fourier integral transform method. It is found that the stress fields at the crack tip are strongly influenced by non-planarity of the interface. Generally speaking, non-planarity of the interface tends to shield the crack tip by reducing the crack-tip stress concentration.  相似文献   

15.
In this paper the interface crack problem for two elastic half spaces bonded through a nonhomogeneous interfacial zone is considered. It is assumed that the medium is under antiplane shear loading. The problem is solved for two different interfacial zone models that may approximate the actual diffusion bonded materials or homogeneous solids bonded through a functionally gradient material. Extensive results are obtained by varying the stiffness and the interfacial zone thickness to crack length ratios. Also, for various limiting cases the behaviour of the stress intensity factors and the strain energy release rates are studied.  相似文献   

16.
17.
A novel bi-layer beam model is developed to account for local effects at the crack tip of a bimaterial interface by modeling a bi-layer composite beam as two separate shear deformable beams. The effect of interface stresses on the deformations of sub-layers, which is referred to as the elastic foundation effect in the literature, is considered in this model by introducing two interface compliance coefficients; thus a flexible joint condition at the crack tip is considered in contrast to the rigid joint condition used in the conventional bi-layer model. An elastic crack tip deformable model is presented, and the closed-form solutions of local deformation at the crack tip are then obtained. By applying this novel crack tip deformation model, the new terms due to the local deformations at the crack tip, which are missing in the conventional composite beam solutions of compliance and energy release rate (ERR) of beam-type fracture specimens, are recovered. Several commonly used beam-type fracture specimens are examined under the new light of the present model, and the improved solutions for ERR and mode mixity are thus obtained. A remarkable agreement achieved between the present and available solutions illustrates the validity of the present study. The significance of local deformation at the crack tip is demonstrated, and the improved solutions developed in this study provide highly accurate predictions of fracture properties which can actually substitute the full continuum elasticity analysis such as the finite element analysis. The new and improved formulas derived for several specimens provide better prediction of ERR and mode mixity of beam-type fracture experiments.*Author for correspondence (E-mail address: qiao@uakron.edu)  相似文献   

18.
Summary. A set of cracks lying along the interface of two dissimilar isotropic materials under a mixed-mode loading is considered. The interface cracks are assumed to be fully open, partially closed with frictionless contact zones and fully closed. The problem is reduced to a homogeneous combined Dirichlet-Riemann boundary value problem, which is solved in closed form. A set of transcendental equations for the determination of the contact zone lengths for an arbitrary number of cracks and the closed-form expressions for the stresses and the displacement jumps on the material interface are obtained. A single crack with one and two contact zones has been considered in details. An explicit set of two transcendental equations for the relative contact zone length and closed-form expressions for the stress intensity factors at the crack tips are obtained for both cases. The contact zone lengths and the stress intensity factors are investigated numerically for different material pairs under different values of the loading, and a comparison of the results for a crack with one and two contact zones is carried out.  相似文献   

19.
同轴单搭接接头破坏过程研究   总被引:1,自引:0,他引:1  
在实验所得结果之基础上研究了预偏角对单搭接胶接接头破坏机制的影响,用弹塑性有限元法模型得到了不同裂纹长度时接头整体和胶层中心等效应力沿裂纹尖端的分布,并研究了外载大小、裂纹长度对应力强度因子的影响.结果表明,同轴接头和标准接头的破坏均从胶层界面开始,但同轴接头以形成较多小裂纹为主,而标准接头中裂纹沿着胶层向中部扩展,最终导致破坏;随裂纹长度的增加,接头上等效应力渐增,胶层中心峰值应力也增大,裂纹尖端的应力远高于其他部位;当裂纹扩展到临界尺寸时,接头会迅速破坏.  相似文献   

20.
This paper studies a penny-shaped crack in a finite thickness piezoelectric material layer. The piezoelectric medium is subjected to a thermal flux on its top and bottom surfaces. Both thermally insulated crack and heated crack are considered. Numerical solution for the finite layer thickness is obtained through the solution of a pair of dual integral equations. The result reduces to the closed form solution when the thickness of the piezoelectric layer becomes infinite. Exact expressions for the stress and electric displacement at the crack border are given as a function of the stress intensity factor, which is determined by the applied thermal flux. This paper is useful for the reliability design of piezoelectric materials in thermal environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号