首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.

The efficiency and robustness of reliability techniques are important in reliability-based design optimization (RBDO). Commonly, advanced mean value (AMV) is utilized in reliability loop of RBDO but unstable solutions using AMV may be obtained for highly concave performance functions. Owing to the challenges of commonly reliability methods, the conjugate gradient analysis (CGA) is proposed as a robust methodology but it shows inefficient results for convex constraints. In this research, hybrid conjugate mean value (HCMV) method is proposed using sufficient condition for the enhancement of efficiency and robustness of RBDO. The CGA and AMV are dynamically utilized for simple solution of convex/concave constraints using sufficient descent criterion in HCMV. The HCMV is used to evaluate the convergence performances and is compared with numerous existing reliability methods through three reliability problems (two concave/convex mathematical examples and one applicable structure) and four RBDO problems. From the numerical results, the HCMV exhibited the better efficiency, and robustness compared to other studied formulations in reliability and RBDO problems.

  相似文献   

2.
Reliability-based design optimization (RBDO) aims at determination of the optimal design in the presence of uncertainty. The available Single-Loop approaches for RBDO are based on the First-Order Reliability Method (FORM) for the computation of the probability of failure, along with different approximations in order to avoid the expensive inner loop aiming at finding the Most Probable Point (MPP). However, the use of FORM in RBDO may not lead to sufficient accuracy depending on the degree of nonlinearity of the limit-state function. This is demonstrated for an extensively studied reliability-based design for vehicle crashworthiness problem solved in this paper, where all RBDO methods based on FORM strongly violates the probabilistic constraints. The Response Surface Single Loop (RSSL) method for RBDO is proposed based on the higher order probability computation for quadratic models previously presented by the authors. The RSSL-method bypasses the concept of an MPP and has high accuracy and efficiency. The method can solve problems with both constant and varying standard deviation of design variables and is particularly well suited for typical industrial applications where general quadratic response surface models can be used. If the quadratic response surface models of the deterministic constraints are valid in the whole region of interest, the method becomes a true single loop method with accuracy higher than traditional SORM. In other cases, quadratic response surface models are fitted to the deterministic constraints around the deterministic solution and the RBDO problem is solved using the proposed single loop method.  相似文献   

3.
Traditional reliability-based design optimization (RBDO) requires a double-loop iteration process. The inner optimization loop is to find the reliability and the outer is the regular optimization loop to optimize the RBDO problem with reliability objectives or constraints. It is known that the computation can be prohibitive when the associated function evaluation is expensive. This situation is even worse when a large number of reliability constraints are present. As a result, many approximate RBDO methods, which convert the double loop to a single loop, have been developed. In this research, an engineering problem with a large number of constraints (144) is designed to test RBDO methods based on the first-order reliability method (FORM), including single- and double-loop methods. In addition to the number of constraints, this problem possesses many local minimums. Some original authors of the RBDO methods are also asked to solve the same problem. The results and the efficiencies for different methods are published and discussed.  相似文献   

4.
Experience with approximate reliability-based optimization methods   总被引:1,自引:5,他引:1  
Traditional reliability-based design optimization (RBDO) requires a double loop iteration process. The inner optimization loop is to find the most probable point (MPP) and the outer is the regular optimization loop to optimize the RBDO problem with reliability objectives or constraints. It is well known that the computation can be prohibitive when the associated function evaluation is expensive. As a result, many approximate RBDO methods, which convert the double loop to a single loop, have been developed. In this work, several approximate RBDO methods are coded, discussed, and tested against a double loop algorithm through four design problems.  相似文献   

5.
Reliability-based design optimization (RBDO) is a methodology for finding optimized designs that are characterized with a low probability of failure. Primarily, RBDO consists of optimizing a merit function while satisfying reliability constraints. The reliability constraints are constraints on the probability of failure corresponding to each of the failure modes of the system or a single constraint on the system probability of failure. The probability of failure is usually estimated by performing a reliability analysis. During the last few years, a variety of different formulations have been developed for RBDO. Traditionally, these have been formulated as a double-loop (nested) optimization problem. The upper level optimization loop generally involves optimizing a merit function subject to reliability constraints, and the lower level optimization loop(s) compute(s) the probabilities of failure corresponding to the failure mode(s) that govern(s) the system failure. This formulation is, by nature, computationally intensive. Researchers have provided sequential strategies to address this issue, where the deterministic optimization and reliability analysis are decoupled, and the process is performed iteratively until convergence is achieved. These methods, though attractive in terms of obtaining a workable reliable design at considerably reduced computational costs, often lead to premature convergence and therefore yield spurious optimal designs. In this paper, a novel unilevel formulation for RBDO is developed. In the proposed formulation, the lower level optimization (evaluation of reliability constraints in the double-loop formulation) is replaced by its corresponding first-order Karush–Kuhn–Tucker (KKT) necessary optimality conditions at the upper level optimization. Such a replacement is computationally equivalent to solving the original nested optimization if the lower level optimization problem is solved by numerically satisfying the KKT conditions (which is typically the case). It is shown through the use of test problems that the proposed formulation is numerically robust (stable) and computationally efficient compared to the existing approaches for RBDO.  相似文献   

6.
The efficiency and robustness of reliability analysis methods are important factors to evaluate the probabilistic constraints in reliability-based design optimization (RBDO). In this paper, a relaxed mean value (RMV) approach is proposed in order to evaluate probabilistic constraints including convex and concave functions in RBDO using the performance measure approach (PMA). A relaxed factor is adaptively determined in the range from 0 to 2 using an inequality criterion to improve the efficiency and robustness of the inverse first-order reliability methods. The performance of the proposed RMV is compared with six existing reliability methods, including the advanced mean value (AMV), conjugate mean value (CMV), hybrid mean value (HMV), chaos control (CC), modified chaos control (MCC), and conjugate gradient analysis (CGA) methods, through four nonlinear concave and convex performance functions and three RBDO problems. The results demonstrate that the proposed RMV is more robust than the AMV, CMV, and HMV for highly concave problems, and slightly more efficient than the CC, MCC, and CGA methods. Furthermore, the proposed relaxed mean value guarantees robust and efficient convergence for RBDO problems with highly nonlinear performance functions.  相似文献   

7.
Reliability-based design optimization (RBDO) incorporates probabilistic analysis into optimization process so that an optimum design has a great chance of staying in the feasible design space when the inevitable variability in design variables/parameters is considered. One of the biggest drawbacks of applying RBDO to practical problem is its high computational cost that is often impractical to industries. In search of the most suitable RBDO method for industrial applications, we first evaluated several existing RBDO approaches in details such as the double-loop RBDO, the sequential optimization and reliability assessment, and the response surface method. Then, based on industry needs, a platform incorporating/integrating the existing algorithm of optimization and reliability analysis is built for a practical RBDO problem. Effectiveness of the proposed RBDO approach is demonstrated using a simple cantilever beam problem and a more complicated industry problem.  相似文献   

8.
For solution of reliability-based design optimization (RBDO) problems, single loop approach (SLA) shows high efficiency. Thus SLA is extensively used in RBDO. However, the iteration solution procedure by SLA is often oscillatory and non-convergent for RBDO with nonlinear performance function. This prevents the application of SLA to engineering design problems. In this paper, the chaotic single loop approach (CLSA) is proposed to achieve the convergence control of original iterative algorithm in SLA. The modification involves automated selection of the chaos control factor by solving a novel one-dimensional optimization model. Additionally, a new oscillation-checking method is constructed to detect the oscillation of iterative process of design variables. The computational capability of CLSA is demonstrated through five benchmark examples and one stiffened shell application. The comparison of numerical results indicates that CSLA is more efficient than the double loop approach and the decoupled approach. CSLA also solves the RBDO problems with highly nonlinear performance function and non-normal random variables stably.  相似文献   

9.
In the field of deterministic structural optimization, the designer reduces the structural cost without taking into account uncertainties concerning materials, geometry and loading. This way, the resulting optimum solution may represent a lower level of reliability and thus a higher risk of failure. It is the objective of reliability-based design optimization (RBDO) to design structures that should be both economic and reliable. The coupling between mechanical modeling, reliability analyses and optimization methods leads to very high computational costs and weak convergence stability. Since the traditional RBDO solution is achieved by alternating between reliability and optimization iterations, the structural designers performing deterministic optimization do not consider the RBDO model as a practical tool for the design of real structures. Fortunately, a hybrid method based on simultaneous solution of the reliability and the optimization problem, has successfully reduced the computational time problem. The hybrid method allows us to satisfy a required reliability level, but the vector of variables here contains both deterministic and random variables. The hybrid RBDO problem is thus more complex than that of deterministic design. The major difficulty lies in the evaluation of the structural reliability, which is carried out by a special optimization procedure. In this paper a new methodology is presented with the aim of finding a global solution to RBDO problems without additional computing cost for the reliability evaluation. The safety factor formulation for a single limit state case has been used to efficiently reduce the computational time . This technique is fundamentally based on a study of the sensitivity of the limit state function with respect to the design variables. In order to demonstrate analytically the efficiency of this methodology, the optimality condition is then used. The efficiency of this technique is also extended to multiple limit state cases. Two numerical examples are presented at the end of the paper to demonstrate the applicability of the new methodology.  相似文献   

10.
The original problem of reliability-based design optimization (RBDO) is mathematically a nested two-level structure that is computationally time consuming for real engineering problems. In order to overcome the computational difficulties, many formulations have been proposed in the literature. These include SORA (sequential optimization and reliability assessment) that decouples the nested problems. SLA (single loop approach) further improves efficiency in that reliability analysis becomes an integrated part of the optimization problem. However, even SLA method can become computationally challenging for real engineering problems involving many reliability constraints. This paper presents an enhanced version of SLA where the first phase is based on approximation at nominal design point. After convergence of first iterative phase is reached the process transitions to a second phase where approximations of reliability constraints are carried out at their respective minimum performance target point (MPTP). The solution is implemented in Altair OptiStruct, where adaptive approximation and constraint screening strategies are utilized in the RBDO process. Examples show that the proposed two-phase approach leads to reduction in finite element analyses while preserving equal solution quality.  相似文献   

11.
The design of high technology structures aims to define the best compromise between cost and safety. The Reliability-Based Design Optimization (RBDO) allows us to design structures which satisfy economical and safety requirements. However, in practical applications, the coupling between the mechanical modelling, the reliability analyses and the optimization methods leads to very high computational time and weak convergence stability. Traditionally, the solution of the RBDO model is achieved by alternating reliability and optimization iterations. This approach leads to low numerical efficiency, which is disadvantageous for engineering applications on real structures. In order to avoid this difficulty, we propose herein a very efficient method based on the simultaneous solution of the reliability and optimization problems. The procedure leads to parallel convergence for both problems in a Hybrid Design Space (HDS). The efficiency of the proposed methodology is demonstrated on the design of a steel hook, where the RBDO is combined with Finite Element Analysis (FEA).  相似文献   

12.
The reliability-based design optimization (RBDO) presents to be a systematic and powerful approach for process designs under uncertainties. The traditional double-loop methods for solving RBDO problems can be computationally inefficient because the inner reliability analysis loop has to be iteratively performed for each probabilistic constraint. To solve RBDOs in an alternative and more effective way, Deb et al. [1] proposed recently the use of evolutionary algorithms with an incorporated fastPMA. Since the imbedded fastPMA needs the gradient calculations and the initial guesses of the most probable points (MPPs), their proposed algorithm would encounter difficulties in dealing with non-differentiable constraints and the effectiveness could be degraded significantly as the initial guesses are far from the true MPPs. In this paper, a novel population-based evolutionary algorithm, named cell evolution method, is proposed to improve the computational efficiency and effectiveness of solving the RBDO problems. By using the proposed cell evolution method, a family of test cells is generated based on the target reliability index and with these reliability test cells the determination of the MPPs for probabilistic constraints becomes a simple parallel calculation task, without the needs of gradient calculations and any initial guesses. Having determined the MPPs, a modified real-coded genetic algorithm is applied to evolve these cells into a final one that satisfies all the constraints and has the best objective function value for the RBDO. Especially, the nucleus of the final cell contains the reliable solution to the RBDO problem. Illustrative examples are provided to demonstrate the effectiveness and applicability of the proposed cell evolution method in solving RBDOs. Simulation results reveal that the proposed cell evolution method outperforms comparative methods in both the computational efficiency and solution accuracy, especially for multi-modal RBDO problems.  相似文献   

13.
This paper develops an efficient methodology to perform reliability-based design optimization (RBDO) by decoupling the optimization and reliability analysis iterations that are nested in traditional formulations. This is achieved by approximating the reliability constraints based on the reliability analysis results. The proposed approach does not use inverse first-order reliability analysis as other existing decoupled approaches, but uses direct reliability analysis. This strategy allows a modular approach and the use of more accurate methods, including Monte-Carlo-simulation (MCS)-based methods for highly nonlinear reliability constraints where first-order reliability approximation may not be accurate. The use of simulation-based methods also enables system-level reliability estimates to be included in the RBDO formulation. The efficiency of the proposed RBDO approach is further improved by identifying the potentially active reliability constraints at the beginning of each reliability analysis. A vehicle side impact problem is used to examine the proposed method, and the results show the usefulness of the proposed method.  相似文献   

14.
This paper presents an efficient reliability-based multidisciplinary design optimization (RBMDO) strategy. The conventional RBMDO has tri-level loops: the first level is an optimization in the deterministic space, the second one is a reliability analysis in the probabilistic space, and the third one is the multidisciplinary analysis. Since it is computationally inefficient when high-fidelity simulation methods are involved, an efficient strategy is proposed. The strategy [named probabilistic bi-level integrated system synthesis (ProBLISS)] utilizes a single-level reliability-based design optimization (RBDO) approach, in which the reliability analysis and optimization are conducted in a sequential manner by approximating limit state functions. The single-level RBDO is associated with the BLISS formulation to solve RBMDO problems. Since both the single-level RBDO and BLISS are mainly driven by approximate models, the accuracy of models can be a critical issue for convergence. The convergence of the strategy is guaranteed by employing the trust region–sequential quadratic programming framework, which validates approximation models in the trust region radius. Two multidisciplinary problems are tested to verify the strategy. ProBLISS significantly reduces the computational cost and shows stable convergence while maintaining accuracy.  相似文献   

15.
The reliability-based design optimization (RBDO) seeks for the best compromise between cost and safety, by considering system uncertainties. In order to overcome computational difficulties, many formulations have been recently developed, leading to confusion about what method should be selected for a given application, due to the lack of full-scale comparative studies. In this context, the present paper aims at giving an overview of various RBDO approaches which are tested on a benchmark constituted of four examples using mathematical and finite element models, with different levels of difficulties. The study is focused on the three main approaches, namely the two-level approach, the single loop approach and the decoupled approach; for each category, two RBDO formulations are discussed, implemented and tested for numerical examples. The benchmark study allows us to give comprehensive overview of various approaches, to give clear ideas about their capabilities and limitations, and to draw useful conclusions regarding robustness and numerical performance.  相似文献   

16.
In the reliability-based design optimization (RBDO) model, the mean values of uncertain system variables are usually applied as design variables, and the cost is optimized subject to prescribed probabilistic constraints as defined by a nonlinear mathematical programming problem. Therefore, a RBDO solution that reduces the structural weight in uncritical regions does not only provide an improved design but also a higher level of confidence in the design. In this paper, we present recent developments for the RBDO model relative to two points of view: reliability and optimization. Next, we develop several distributions for the hybrid method and the optimum safety factor methods (linear and nonlinear RBDO). Finally, we demonstrate the efficiency of our safety factor approach extended to nonlinear RBDO with application to a tri-material structure.  相似文献   

17.
In the reliability-based design optimization (RBDO) process, surrogate models are frequently used to reduce the number of simulations because analysis of a simulation model takes a great deal of computational time. On the other hand, to obtain accurate surrogate models, we have to limit the dimension of the RBDO problem and thus mitigate the curse of dimensionality. Therefore, it is desirable to develop an efficient and effective variable screening method for reduction of the dimension of the RBDO problem. In this paper, requirements of the variable screening method for deterministic design optimization (DDO) and RBDO are compared, and it is found that output variance is critical for identifying important variables in the RBDO process. An efficient approximation method based on the univariate dimension reduction method (DRM) is proposed to calculate output variance efficiently. For variable screening, the variables that induce larger output variances are selected as important variables. To determine important variables, hypothesis testing is used in this paper so that possible errors are contained in a user-specified error level. Also, an appropriate number of samples is proposed for calculating the output variance. Moreover, a quadratic interpolation method is studied in detail to calculate output variance efficiently. Using numerical examples, performance of the proposed method is verified. It is shown that the proposed method finds important variables efficiently and effectively  相似文献   

18.
In the engineering problems, the randomness and the uncertainties of the distribution of the structural parameters are a crucial problem. In the case of reliability-based design optimization (RBDO), it is the objective to play a dominant role in the structural optimization problem introducing the reliability concept. The RBDO problem is often formulated as a minimization of the initial structural cost under constraints imposed on the values of elemental reliability indices corresponding to various limit states. The classical RBDO leads to high computing time and weak convergence, but a Hybrid Method (HM) has been proposed to overcome these two drawbacks. As the hybrid method successfully reduces the computing time, we can increase the number of variables by introducing the standard deviations as optimization variables to minimize the error values in the probabilistic model. The efficiency of the hybrid method has been demonstrated on static and dynamic cases with extension to the variability of the probabilistic model. In this paper, we propose a modification on the formulation of the hybrid method to improve the optimal solutions. The proposed method is called, Improved Hybrid Method (IHM). The main benefit of this method is to improve the structure performance by much more minimizing the objective function than the hybrid method. It is also shown to demonstrate the optimality conditions. The improved hybrid method is next applied to two numerical examples, with consideration of the standard deviations as optimization variables (for linear and nonlinear distributions). When integrating the improved hybrid method within the probabilistic model variability, we minimize the objective function more and more.  相似文献   

19.
Sequential optimization and reliability assessment (SORA) is one of the most popular decoupled approaches to solve reliability-based design optimization (RBDO) problem because of its efficiency and robustness. In SORA, the double loop structure is decoupled through a serial of cycles of deterministic optimization and reliability assessment. In each cycle, the deterministic optimization and reliability assessment are performed sequentially and the boundaries of violated constraints are shifted to the feasible direction according to the reliability information obtained in the previous cycle. In this paper, based on the concept of SORA, approximate most probable target point (MPTP) and approximate probabilistic performance measure (PPM) are adopted in reliability assessment. In each cycle, the approximate MPTP needs to be reserved, which will be used to obtain new approximate MPTP in the next cycle. There is no need to evaluate the performance function in the deterministic optimization since the approximate PPM and its sensitivity are used to formulate the linear Taylor expansion of the constraint function. One example is used to illustrate that the approximate MPTP will approach the accurate MPTP with the iteration. The design variables and the approximate MPTP converge simultaneously. Numerical results of several examples indicate the proposed method is robust and more efficient than SORA and other common RBDO methods.  相似文献   

20.
Using computationally cheap low-fidelity (LF) model and more accurate but expensive high-fidelity (HF) model, variable fidelity (VF) model has been widely used in engineering design to replace the actual computationally expensive experiments or computer simulations. To further extend the application of VF to reliability-based design optimization (RBDO), a new framework based on sequential linear programming (SLP) is proposed in this paper. Combining the advantages of additive scaling method and multiplicative scaling method, a hybrid scaling method based on least squares (LSHS) is developed. In LSHS method, the VF model is introduced to replace the implicit performance function in RBDO by using the HF function values and gradient values at all evaluated points around the current design. With the failure probability and its gradient calculated by Monte Carlo Simulation (MCS) at current design, SLP is adopted to calculate the next design. A novel method which considers the target reliability index and the influence domain at the current design is also developed to determine the step size in every sub-optimization problem. Two numerical examples and the shape optimization problem of a curved beam are analyzed in order to demonstrate the performance of the proposed methodology. The comparison results show that the proposed method is very accurate and efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号