首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrical discharge coating (EDC) performs not only machining but also surface modification of workpiece by changing the polarity of the electrode and dielectric medium. As a candidate of metal bipolar plate in proton exchange membrane fuel cell application, machined Al alloy needs surface coating to overcome its poor corrosion resistance. The goal of this study was to investigate the coating characteristics of 6061-T6 aluminum (Al) alloy machined using titanium (Ti)-sintered electrodes in wet and dry EDC. The results show that in wet EDC using cathodic T-8 sintered electrode, both material removal rate (MRR) and tool wear rate (TWR) were kept reasonably low. Discharge current (I p) and pulse duration (T on) are the main determinants of the morphology of the EDCed Al alloy surface. The appropriate parameters for wet EDC are found to be 1 A?<?I p?<?8 A and 9 μs?<?T on?<?100 μs at DF?=?27 %. Adding TiN powder to kerosene not only improved the EDCed surface quality but also decreased the coefficient of friction. The formation of a TiC layer on the machined surface prolonged the onset of friction transition, which would in turn enhance the wear resistance of the machined surface. However, no TiN layer was formed during wet EDC. On the other hand, in dry EDC using anodic T-6 and T-8 sintered electrodes, both MRR and TWR were below zero. A pure TiN layer of 20-μm thickness was deposited on the EDCed surface and featured good spallation resistance. The appropriate dry EDC parameters for forming a pure TiN layer on a workpiece surface are found to be 1 A?<?I p?<?30 A and 6 μs?<?T on?<?72 μs at DF?=?16 %. From the experimental results of this study, the application of EDC to surface modification during fabrication of the fluid pattern on an Al metal bipolar plate can be expected.  相似文献   

2.
This study addresses micro-slit EDM machining feasibility using pure water as the dielectric fluid. Experimental results revealed that pure water could be used as a dielectric fluid and adopting negative polarity EDM machining could obtain high material removal rate (MRR), low electrode wear, small slit expansion, and little machined burr, compared to positive polarity machining. In comparing kerosene versus pure water, pure water was observed to cause low carbon adherence to the electrode surface. Also discharge energy does not decrease and the discharge processes are not interrupted. Therefore, MRR was higher, and related electrode wear ratio compared to kerosene use was lower. In a continual EDM with multi-slit machining, kerosene will cause carbon element adherence, creating an initially high MRR and electrode wear, with rapid decline. However, pure water will not cause carbon element adherence on the electrode surface, so MRR and electrode wear is always stable in this process.  相似文献   

3.
The present study was undertaken to identify the appropriate parameter settings for rough and finish machined surface for EN31, H11, and high carbon high chromium (HCHCr) die steel materials in a powder-mixed electric discharge machining process. The effect of seven different process variables along with some of their interactions was evaluated using a dummy-treated experimental design and analysis of variance. Material removal rate (MRR), tool wear rate, and surface finish were measured after each trial and analyzed. The parameter settings for rough and finished machining operations were obtained. EN31 exhibited maximum MRR as compared to the other two materials at similar process settings. Copper (Cu) electrode with aluminum suspended in the dielectric maximized the MRR. Suspending powder in the dielectric resulted in surface modification. Graphite powder showed a lower MRR but improved the surface finish. HCHCr require higher current and pulse on settings for initiating a machining cut and works best in combination with tungsten–Cu electrode and graphite powder for improved finish. The MRR for H11 is lower than EN31 but significantly higher than HCHCr under same process conditions.  相似文献   

4.
Pipe cutting technology plays an important role in the process of offshore platforms decommissioning, as many devices such as tubing, drill pipe, and casing need to be decommissioned. In this study, a novel cutting pipe technology based on electro-discharge machining (EDM) is proposed, and a cutting pipe mechanism is developed to cut the pipes for decommissioning offshore platforms. The machining principles and characteristics of the technique are described. The effects of machining parameters, including tool polarity, dielectric fluid, electrode material and width, pulse on-time, pulse off-time, peak voltage, and electrode rotation speed to machining performance, are investigated. The material removal rate (MRR) of the machined casing and tool electrode wear ratio (EWR) is obtained based on the calculation of the percentage of mass loss per machining time. The experimental results show that a better cutting performance can be obtained with negative tool polarity at the conditions of dielectric fluid of emulsion, pulse on-time of 500 μs, pulse off-time of 200 μs, peak voltage of 70 V, copper electrode width of 28 mm, and electrode rotation speed of 250 rpm is a better choice. Additionally, the cutting slots surface has been investigated by the means of SEM. The cutting slots machined by the rotary EDM are clean and smooth.  相似文献   

5.
The present study reports the results of an experimental work carried out to evaluate the improvement in machined surface properties of die steels machined using powder mixed electric discharge machining (PMEDM) process. Two surface responses, surface finish and microhardness were analyzed for changes when machined with Si, W and graphite powders mixed in dielectric fluid. The machined surfaces were subsequently analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) to study the element migration from powder, dielectric and the tool. The powder mixed with dielectric and its concentration, current and pulse on time were identified as the significant factors affecting surface finish. Brass electrode and tungsten powder resulted in good surface finish. Amongst the dielectrics used, kerosene provided a better cooling effect whereas EDM oil resulted in better surface finish. The microhardness of the machined surface was also affected by powder and its concentration, current, pulse on time and electrode material. W-Cu electrode and W powder resulted in a higher microhardness. The SEM and EDS analysis showed significant migration of material from the suspended powder, electrode and dielectric to the machined surface.  相似文献   

6.
Electro-discharge machining (EDM) is an enormously used nonconventional process for removing material in die making, aerospace, and automobile industries. It consists of limitations like poor volumetric material removal rate (MRR) and reduced surface quality. Powder mixed EDM (PMEDM) is a new development in EDM to enhance its machining capabilities. The present work investigates the effect of powder concentration (Cp), peak current (Ip), pulse on time (Ton), duty cycle (DC) and gap voltage (Vg) on MRR, tool wear rate (TWR), electrode wear ratio (EWR), and surface roughness (SR) simultaneously for H-11 die steel using SiC powder. Taguchi's L27 orthogonal array has been used to conduct the experiments. Multiobjective optimization using grey relational analysis (GRA) and technique for order of preference by similarity to ideal solution (TOPSIS) has been used to maximize the MRR and minimize the TWR, EWR, and SR and determine the optimal set of process parameters. Analysis of variance (ANOVA) has been performed to understand the significance of each process parameter. Results were verified by conducting confirmatory tests. GRA and TOPSIS exhibit an improvement of 0.1843 and 0.14308 in the preference values, respectively. Microstructure analysis has been done using scanning electron microscope (SEM) for the optimum set of parameters.  相似文献   

7.
Wire-cut Electro Discharge Machining (WEDM) is a special form of conventional EDM process in which the electrode is a continuously moving conductive wire. The present study aims at determining parametric influence and optimum process parameters of Wire-EDM using Taguchi's technique and a Genetic algorithm. The variation of the performance parameters with machining parameters was mathematically modeled by Regression analysis method. The objective functions are defined as Dimensional Error (DE), Surface Roughness (SR) and Volumetric Material Removal Rate (VMRR). Experiments were designed as per Taguchi's L16 Orthogonal Array (OA) wherein Pulse-on duration, Current, Pulse-off duration, Bed-speed and Flushing rate have been considered as the important input parameters. The matrix experiments were conducted for the material Hot Die Steel (HDS) having the thickness of 40 mm. The Heat Affected Zone (HAZ) characteristics of the eroded materials were assessed by Scanning Electron Microscope (SEM) and the microhardness of the material was tested using Vickers microhardness tester. The results of the study reveal that among the machining parameters, it is preferable to go for smaller pulse-off duration for achieving overall good performance. Regarding pulse-on duration, higher values are recommended for error constrained machining with higher MRR and constrained/limited values for attaining good surface texture. Smaller current is suggested for better surface finish/texture control, medium range for error control and high value for MRR. Finally, the validation exercise was performed with the optimum levels of the process parameters. The results confirm the efficiency of the approach employed for optimization of process parameters in this study.  相似文献   

8.
In this study, a new method for machining of nonconductive ceramic workpieces in electric discharge machining (EDM) was developed. Machining surfaces of nonconductive workpieces were coated with a conductive layer (CL) and graphite powder was added to dielectric fluid for machining. Al2O3, ZrO2, SiC, B4C and glass workpiece samples were machined by using the method. Different machining conditions were tested for each sample and optimum machining parameters were determined. Effect of electrical conductivity, thermal conductivity and melting point of workpieces on material removal rate (MRR) was investigated. Optical microscope and SEM (Scanning Electron Microscope) surface photographs of workpieces taken after machining are presented and discussed.  相似文献   

9.
Present study investigates the feasibility of improving surface characteristics in the micro-electric discharge machining (EDM) of cemented tungsten carbide (WC?CCo), a widely used die and mould material, using graphite nano-powder-mixed dielectric. In this context, a comparative analysis has been carried out on the performance of powder-mixed sinking and milling micro-EDM with view of obtaining smooth and defect-free surfaces. The surface characteristics of the machined carbide were studied in terms of surface topography, crater characteristics, average surface roughness (R a) and peak-to-valley roughness (R max). The effect of graphite powder concentration on the spark gap, material removal rate (MRR) and electrode wear ratio (EWR) were also discussed for both die-sinking and milling micro-EDM of WC?CCo. It has been observed that the presence of semi-conductive graphite nano-powders in the dielectric can significantly improve the surface finish, enhance the MRR and reduce the EWR. Both the surface topography and crater distribution were improved due to the increased spark gap and uniform discharging in powder-mixed micro-EDM. The added nano-powder can lower the breakdown strength and facilitate the ignition process thus improving the MRR. However, for a fixed powder material and particle size, all the performance parameters were found to vary significantly with powder concentration. Among the two processes, powder-mixed milling micro-EDM was found to provide smoother and defect-free surface compared to sinking micro-EDM. The lowest value of R a (38?nm) and R max (0.17???m) was achieved in powder-mixed milling micro-EDM at optimum concentration of 0.2?g/L and electrical setting of 60?V and stray capacitance.  相似文献   

10.
Electro-discharge machining (EDM) has grown tremendously over the last few decades. Due to its extensive capabilities, this technique has been increasingly adapted to new industrial applications within the field of aerospace, medical, die and mould production, precision tooling, etc. The novelty of the research presented in this paper lies in solving an inversion model, based on the least squares theory, which involves establishing the values of the EDM input parameters (peak current level, pulse-on time and pulse-off time) to ensure the simultaneous fulfilment of material removal rate (MRR), electrode wear ratio (EWR) and surface roughness (SR). The inversion model was constructed from a set of experiments and the equations formulated in the forward model described in the first part of this paper. In the forward model, the well-known ANOVA and regression models were used to predict the EDM output performance characteristics, such as MRR, EWR and SR in the EDM process for AISI 1045 steel with respect to a set of EDM input parameters.  相似文献   

11.
实验研究探讨了一种使用线框电极的电火花套料加工的新工艺.根据正交试验方法来分析精加工时加工参数对加工速度、电极损耗和加工表面粗糙度的影响,以确定套料精加工时最佳的电规准参数.依据直孔套料加工参数在模具材料中加工出了圆弧弯曲孔.  相似文献   

12.
This study investigates the effect of electric discharge machining (EDM) process parameters [current, pulse-on time (Ton), pulse-off time (Toff) and electrode material] on material removal rate (MRR), electrode wear rate (EWR) and surface roughness (SR) during machining of aluminum boron carbide (Al–B4C) composite. This article also summarizes a brief literature review related to aluminum metal matrix composites (Al-MMCs) based on different process and response parameters, work and tool material along with their sizes, dielectric fluid and different optimization techniques used. The MMC used in the present work is stir casted using 5% (wt) B4C particles of 50 micron size in Al 6061 metal matrix. Taguchi technique is used for the design of experiments (L9-orthogonal array), while the experimental results are analyzed using analysis of variance (ANOVA). Response table for average value of MRR, EWR and SR shows that current is the most significant factor for MRR and SR, while electrode material is most important for EWR. ANOVA also confirms similar results. It is also observed that the optimum level of process parameters for maximum MRR is A3B1C3D3, for minimum EWR is A1B2C3D1, and for SR is A1B3C3D3.  相似文献   

13.
This study investigated the influences of dielectric characteristics, namely, electrical conductivity, oxidability, and viscosity on the electrical discharge machining (EDM) of titanium alloy. A new kind of compound dielectric with optimal processing effect was developed based on the identified effects. Comparative experiments on titanium alloy EDM in compound dielectric, distilled water, and kerosene were performed to analyze the difference in material removal rate (MRR), relative electrode wear ratio (REWR), and surface roughness (SR). The experimental results revealed that titanium alloy EDM in compound dielectric achieved the highest MRR, a lower REWR than that in kerosene, and better SR and fewer micro-cracks than that in distilled water.  相似文献   

14.
The near-dry wire-cut electrical discharge machining (WEDM) process is an environment-friendly manufacturing process, in which there is no harmful effect to the operators. The authors focus on the non-polluting ways to cut the materials and to meet the technical requirements like high material removal rate (MRR) and low surface roughness (Ra). In the near-dry WEDM, the finite discrete periodic series sparks between the wire electrode and conducting work material separated by minimum quantity of deionized water mixed with compressed air (air-mist) as a dielectric medium. In the present research, parametric analysis of the process has been performed with the molybdenum wire tool and high speed steel (HSS-M2) work piece. Experiments have been performed using air-mist as the dielectric medium to study the impact of gap voltage, pulse-on time, pulse-off time, air-mist pressure and discharge current on the MRR and Ra using the mixed orthogonal (L18) array-Taguchi method. Taguchi based analysis of variance test was performed to identify the significant parameters. The gap voltage, pulse-on time, discharge current and air-mist pressure were found to have momentous effects on MRR and Ra. The best regression models for MRR and Ra have been developed by regression analysis. The optimal rough and finish cutting parameters have been predicted by Pareto-front using the multi-objective evolutionary algorithm (MOEA).  相似文献   

15.
This paper seeks to improve the surface quality of electrical discharge machining (EDM) Ti–6Al–4V using plasma etching treatment and TiN coating. The EDM parameter setting is optimized firstly based on grey-Taguchi method. Four EDM parameters, including current (A), voltage (V), pulse duration (μs), and duty factor (%), are selected for multiple performance of lower electrode wear rate (EWR), higher material removal rate (MRR), and better surface roughness (SR). An orthogonal array, signal-to-noise (S/N) ratios, and analysis of variance (ANOVA) are used to analyze the effects of these EDM parameters. Normality tests show that all the distributions fit normality assumption with p?=?0.276, 0.688, and 0.663, respectively. The EDM process is stable over time monitored by Shewhart control charts. It is observed that there is an EDM damaged layer on the surface consisting of debris, microcracks, molten drops, and solidified metals by scanning electron microscopy. The plasma etching and TiN coating are employed to improve surface quality of the EDMed Ti–6Al–4V alloys. The results demonstrate that using the oxygen plasma etching treatment, the damaged phenomena are decreased, and the mean SR value is reduced from Ra?=?2.91 to Ra?=?2.50 μm. In addition, when the plasma-treated alloy is coated with Ti buffer/TiN coating by physical vapor deposition, the surface morphology exhibits less defects and a better surface finish. The mean SR values are further reduced from Ra?=?2.50 μm to Ra?=?1.48 μm (for 740 nm TiN film) and Ra?=?0.61 μm (for 1450 nm TiN film), respectively.  相似文献   

16.
A novel combined process of machining silicon carbide (SiC) ceramics with electrical discharge milling and mechanical grinding is presented. The process is able to effectively machine a large surface area on SiC ceramics with a good surface quality. The effect of tool polarity on the process performance has been investigated. The effects of peak current, peak voltage, pulse on-time and pulse off-time on the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR) have been investigated with Taguchi experimental design. The mathematical models for the MRR, EWR, and SR have been established with the stepwise regression method. The experiment results show that the MRR, EWR, and SR can reach 46.2543 mm3/min, 20.7176%, and 0.0340 µm, respectively, with each optimal combination level of machining parameters.  相似文献   

17.
In this article, a material removal rate (MRR) and electrode wear ratio (EWR) study on the powder mixed electrical discharge machining (PMEDM) of cobalt-bonded tungsten carbide (WC-Co) has been carried out. This type of cemented tungsten carbide was widely used as moulding material of metal forming, forging, squeeze casting, and high pressure die casting. In the PMEDM process, the aluminum powder particle suspended in the dielectric fluid disperses and makes the discharging energy dispersion uniform; it displays multiple discharging effects within a single input pulse. This study was made only for the finishing stages and has been carried out taking into account the four processing parameters: discharge current, pulse on time, grain size, and concentration of aluminum powder particle for the machinability evaluation of MRR and EWR. The response surface methodology (RSM) has been used to plan and analyze the experiments. The experimental plan adopts the face-centered central composite design (CCD). This study highlights the development of mathematical models for investigating the influence of processing parameters on performance characteristics.  相似文献   

18.
Silicon carbide (SiC) ceramic has been widely used in modern industry because of its superior mechanical properties, wear, and corrosion resistance even at elevated temperature. However, the manufacture of SiC ceramic is not an efficient process by conventional machining methods. This paper employs a steel-toothed wheel as the tool electrode to machine SiC ceramic using electric discharge milling. The process is able to effectively machine a large surface area on SiC ceramic. To further improve the process performance, three kinds of emulsion are proposed as the dielectric in this paper. The effects of dielectric, tool polarity, pulse duration, pulse interval, peak voltage, and peak current on the process performance such as the material removal rate (MRR) and surface roughness (SR) have been investigated. Furthermore, the microstructure of the machined surface is examined with a scanning electron microscope (SEM), an energy-dispersive spectrometer (EDS), and X-ray diffraction (XRD).  相似文献   

19.
Maraging steel (MDN 300) exhibits high levels of strength and hardness. Optimization of performance measures is essential for effective machining. In this paper, Taguchi method, used to determine the influence of process parameters and optimization of electrical discharge machining (EDM) performance measures on MDN 300 steel, has been discussed. The process performance criteria such as material removal rate (MRR), tool wear rate (TWR), relative wear ratio (RWR), and surface roughness (SR) were evaluated. Discharge current, pulse on time, and pulse off time have been considered the main factors affecting EDM performance. The results of the present work reveal that the optimal level of the factors for SR and TWR are same but differs from the optimum levels of the factors for MRR and RWR. Further, discharge current, pulse on time, and pulse off time have been found to play a significant role in EDM operations. Detailed analysis of structural features of machined surface was done by using scanning electron microscope (SEM) to understand the influence of parameters. SEM of electrical discharge machining surface indicates that at higher discharge current and longer pulse on duration give rougher surface with more craters, globules of debris, pockmarks or chimneys, and microcracks than that of lower discharge current and lower pulse on duration.  相似文献   

20.
提出一种混粉准干式电火花加工技术,其加工介质是气液固三相流混合物。试验结果表明,材料去除率与表面粗糙度随脉冲宽度、峰值电流及分层厚度的增大而增大,脉冲间隙作用则相反,提高空气压力既有助于提高材料去除率又可降低表面粗糙度,电极损耗随脉冲宽度增大而减小,当脉冲宽度较大时电极损耗接近于零,随峰值电流增大而增加。由于液滴、粉末的介入,气体介质的绝缘强度降低,放电间隙会增加,有利于电蚀产物的排除,可减少短路、电弧放电的发生率,加工稳定性得到提高,从而材料去除率得到提高;由于粉末会产生放电分散效果,电蚀凹坑深度减小,工件表面粗糙度降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号