首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
With a highly fragmented market and increased competition, platform-based product family design is recognised as an effective method for constructing a product line that satisfies diverse customer demand while keeping design and production cost- and time-effective. Recognising the need for modularity and commonality in platform development, this paper presents a systematic framework to assist in implementing top-down platform and product family design, which aims to achieve system-level modularity for variety generation, and rationalise the commonality configuration for module instantiation. In the first phase of platform development, a robust and flexible product family architecture is constructed to accommodate variations by analysing the external varieties of the generic product architecture, and provide a modularity design space, wherein the design tasks are further decomposed into module instantiation. The second phase of detailed platform development aims to enhance commonality in terms of engineering efficiency by coordinating with the back-end product realisation stage. A tractable optimisation method is used to capture and resolve the trade-off between commonality configuration and individual product performance. A family of power tool designs is used to demonstrate the potential and feasibility of the proposed framework at the system level and detailed design stages.  相似文献   

2.
The product platform concept represents a powerful approach for manufacturers to compete cost-effectively in a global market that requires diverse product range, quick time to market, and rapid responses to supply sources. A key challenge is how to strike a balance between platform commonality and modularity. When a manufacturer outsources its raw materials or module options, the supplier capabilities and production costs should be considered. This paper discusses optimizing decision variables for simultaneously configuring not only platform-based product variants but also their supply chain. We develop a mixed-integer programming model that integrates both platform product design and material purchase decisions based on cost drivers sensitive to commonality and modularity. Theoretical analysis of the model yields two properties, allowing us to further simplify the model and thus help in developing an effective solution algorithm. A numerical example is presented to illustrate how manufacturers strive to dynamically adjust their product design strategies in response to changes in the market demands and/or supply base.  相似文献   

3.
Redesigning a product family entails carefully balancing the trade-offs between commonality and differentiation that are governed by the underlying platform architecture. Numerous metrics for commonality and variety exist to support product family and product platform design; however, rarely are they used in concert to help redesign platforms and families of products effectively. In this paper, we introduce an integrated approach that uses multiple product family metrics to establish an effective platform redesign strategy. Specifically, we present a detailed procedure to integrate the generational variety index, product line commonality index, and design structure matrix to prioritize components for redesign based on variety and commonality needs in a family of products. While all three of these tools exist in the literature and have been used extensively to support product family design, the novelty in our work lies in their integration to establish a redesign strategy for platform architectures that achieves a better balance between the commonality and variety within a product family. To demonstrate the proposed approach, case studies involving two generations of wireless computer mice and two families of dishwashers are presented. Ongoing and future work is also discussed.  相似文献   

4.
Today's industry faces new challenges such as diverse customer demands, shorter product development cycles and cost pressure, which compel manufacturing firms to change their production paradigm from one-size-fits-all mass production toward mass customisation. Over the past decades, modular design has received great attention as a key enabler for mass customisation, and component sharing and platform modularity have been quite popular strategies for modular design. While modular design approaches and their strategies offer a number of advantages such as late product differentiation and changeability, there are unfortunately negative aspects, for example, sales loss due to reduced performance compared to integral design approaches, which have received little attention. Therefore, we propose a hybrid model of the two strategies in order to develop the most profitable product family. A detailed numerical analysis provides empirical support for the feasibility and effectiveness of the hybrid model.  相似文献   

5.
The variability of products affects customers’ satisfaction by increasing flexibility in decision-making for choosing a product based on their preferences in competitive market environments. In product family design, decision-making for determining a platform design strategy or the degree of commonality in a platform can be considered as a multidisciplinary optimization problem with respect to design variables, production cost, company’s revenue, and customers’ satisfaction. In this paper, we investigate evolutionary algorithms and module-based design approaches to identify an optimal platform strategy in a product family. The objective of this paper is to apply a multi-objective particle swarm optimization (MOPSO) approach to determine design variables for the best platform design strategy based on commonality and design variation within the product family. We describe modifications to apply the proposed MOPSO to the multi-objective problem of product family design and allow designers to evaluate varying levels of platform strategies. To demonstrate the effectiveness of the proposed approach, we use a case study involving a family of General Aviation Aircraft. We show that the proposed optimization algorithm can provide a proper solution in product family design process through experiments. The limitations of the approach and future work are also discussed.  相似文献   

6.
Assessing and improving commonality and diversity within a product family   总被引:1,自引:1,他引:0  
At a time when product differentiation is a major indicator of success in the global market, each company is looking to offer competitive and highly differentiated products. This differentiation issue is restricted by the design of platform-based products that share modules and/or components. It is not easy to differentiate products in a market that is often overwhelmed by numerous options. A platform-based approach can be risky because competition in the global market can become an internal competition among similar products within the family if there is not enough differentiation in the family. Thus, the goal for the product platform is to share elements for common functions and to differentiate each product in the family by satisfying different targeted needs. To assess commonality in the family, numerous indices have been proposed in the literature. Nevertheless, existing indices focus on commonality and reflect an increase in value when commonality increases but do not positively reflect an increase in the value as a result of diversity; hence, the commonality versus diversity index (CDI) is introduced in this paper to assess the commonality and diversity within a family of products or across families. The CDI has variable levels of depth analysis to help designers design or improve the product family. Two case studies using single-use cameras and power tool families highlight the usefulness of this new index.  相似文献   

7.
This paper describes two metrics to measure the complexity involved in assembly and disassembly tasks for open architecture products during its use phase. The approach proposed is based on the summary of all tasks required to assemble and disassemble a predefined set of modules to generate several product variants, which comprise different working levels or functionalities. The aim of the method is to provide a useful tool to designers in the analysis of product complexity regarding use and further phases in which the assembly and disassembly of modules are required. The benefits and usefulness of the metrics are oriented to enhance the sustainability performance of products through the measurement of complexity in modular systems for the decision-making during the design stage. The reduction of complexity involves significant benefits in all lifecycle phases of product, especially when the user or customer is responsible for many related tasks (maintenance, upgrading, reconfiguration and final disposal of modules). The metrics and their calculation process are illustrated using two case study products.  相似文献   

8.
Benefits of modularity are often achieved from module independence that allows for independent development to reduce overall lead time and economies of scale due to sharing similar modules across products in a product family. Current modularity methods tend to describe only one of these views, either the module–module independence or the product–product shared module similarity. This paper proposes a new hybrid module generation algorithm that balances both module independence and product similarity, allowing product similarity strategy to influence the coupling-driven architecture considerations. The proposed method builds on two popular matrix-based methods: the design structure matrix approach and modular function deployment that each has been developed to support these two different aspects of the module generation. This paper presents a novel algorithm that integrates both views and allows a balanced clustering that takes both interactions and company portfolio strategy into account. Usefulness of the algorithm is presented using a cordless handheld vacuum cleaner as a case study and by comparing it to alternative approaches.  相似文献   

9.
The shortening of product delivery lead-times can usually be achieved by keeping high-level components in inventory, however in small-volume production systems, maintaining such inventories is often a costly as well as a risky business strategy. If the risk of maintaining unsold inventory can be decreased, even small-volume manufacturers may be able to justify holding more significant quantities of versatile inventory. This paper discusses a component commonality effect to breakthrough the trade-off relationship between inventory levels and delivery lead-times for such small-volume production systems. By using the same component in different products, inventory maintenance costs can be dramatically reduced, but component commonality design problems are inherently complex, since excessive module commonality may lead to lower product performances, and there are trade-off relationships between product performance and cost reductions obtained through component commonality. In this paper, such a design problem is formulated as a multiobjective component commonality design optimisation problem considering inventory level, delivery lead-time and product performance, and the optimal solutions are obtained as a Pareto optimal solution set. Detailed procedures concerning the proposed design method, including inventory simulation, are discussed and developed for a switchgear design problem. Finally, an example switchgear design problem is solved to illustrate that optimal use of component commonalities across different modules can significantly reduce inventory costs, while also shortening product delivery lead-times.  相似文献   

10.
Product family design and platform-based product development have garnered much attention. They have been used to provide nearly customised products to satisfy individual customer requirements and simultaneously achieve economies of scale during production. The inherent challenge in product family design is to balance the trade-off between product commonality (how well the components and functions can be shared across a product family) and variety (the range of different products in a product family). Quantifying this trade-off at the product family planning stage in a way that supports the engineering design process has yet to be accomplished. In this paper, we introduce a graphical evaluation method, the product family evaluation graph (PFEG), that allows designers to choose the ‘best’ product family design option among sets of alternatives based on their performance with respect to an ideal commonality/variety trade-off determined by a company's particular competitive focus, and guides designers towards a more desirable trade-off between commonality and variety in an existing product family. Two necessary supporting pieces for developing the PFEG are also proposed. One piece is the development of commonality and variety indices to quantitatively capture the degree of commonality and variety in a product family and its functions and components. We introduce two sets of commonality and variety indices–the CDI (commonality versus diversity index) for commonality (CDIC) and variety (CDIV), and the CMC (comprehensive metric for commonality) for commonality (CMCC) and variety (CMCV)–to achieve this. The other supporting piece is the development of a quantitative representation of the ideal trade-off between commonality and variety in a product family, known as the commonality/variety trade-off angle α, based on the elements that characterise a company's competitive focus and their industry-wide competitors. A linear regression model is used to link the qualitative competitive focus to a quantitative engineering perspective, and then to estimate the ideal trade-off angle. The commonality/variety trade-off angle can then be applied to the PFEG to help designers evaluate a product family or compare product family design alternatives. Most importantly, the PFEG is not just the graph of the two sets of indices; it is the representation of the commonality/variety trade-off relative to the desired competitive focus. Four families of power tools are used to illustrate how the computation of such indices supports product family design evaluation in the PFEG. In this paper, we only use the CDI in the example application, but the CMC can be computed using the same approach.  相似文献   

11.
Product family design is cost-efficient for achieving the best trade-off between commonalization and diversification. However, for computationally intensive design functions which are viewed as black boxes, the family design would be challenging. A two-stage platform configuration method with generalized commonality is proposed for a scale-based family with unknown platform configuration. Unconventional sensitivity analysis and information on variation in the individual variants’ optimal design are used for platform configuration design. Metamodelling is employed to provide the sensitivity and variable correlation information, leading to significant savings in function calls. A family of universal electric motors is designed for product performance and the efficiency of this method is studied. The impact of the employed parameters is also analysed. Then, the proposed method is modified for obtaining higher commonality. The proposed method is shown to yield design solutions with better objective function values, allowable performance loss and higher commonality than the previously developed methods in the literature.  相似文献   

12.
An effectively designed product platform is vital to the final product family derived from it. A product platform design consists of platform configuration to decide which variables to make common across the product family and to determining the optimal values for platform and scaling variables for all product variants. Many existing product family design methods assume a given platform configuration, i.e. the platform variables are specified a priori by designers. However, selecting the right combination of common and scaling variables is not trivial. Most approaches are single-platform methods, in which design variables are either shared across all product variants or not at all. While in multiple-platform design, platform variables can have special value with regard to a subset of product variants within the product family, offering opportunities for superior overall design. This paper proposes a quantitative method for scale-based multiple-platform design using clustering analysis and Shannon's Entropy theory. Optimization methods are used to design the product family by holding the values of platform variables constant and to find the best values of the scaling variables. An information theoretical approach is used to help select platform variables based on the clustering analysis of individually designed products. Validity analysis is performed to determine the optimal settings for platform variables. Local clustering is further performed on each platform variable, to establish subsets of variants such that variants within a subset are more similar to each other than they are to variants in other subsets and a common value is used to represent the various values of variants in each subset. A case study is used to illustrate the process of the proposed method, and the design solutions are compared with that found by other methods given in previous literature. The comparison results verified that the multiple-platform design can lead to superior solutions of product family.  相似文献   

13.
Unlike conventional approaches where optimization is performed on a unique component of a specific product, optimum design of a set of components for employing in a product family can cause significant reduction in costs. Increasing commonality and performance of the product platform simultaneously is a multi-objective optimization problem (MOP). Several optimization methods are reported to solve these MOPs. However, what is less discussed is how to find the trade-off points among the obtained non-dominated optimum points. This article investigates the optimal design of a product family using non-dominated sorting genetic algorithm II (NSGA-II) and proposes the employment of technique for order of preference by similarity to ideal solution (TOPSIS) method to find the trade-off points among the obtained non-dominated results while compromising all objective functions together. A case study for a family of suspension systems is presented, considering performance and commonality. The results indicate the effectiveness of the proposed method to obtain the trade-off points with the best possible performance while maximizing the common parts.  相似文献   

14.
Product family design entails all of the challenges of product design while adding the complexity of coordinating the design of multiple products in an effort to maximize commonality across a set of products without compromising their individual performance. This paper presents the Variation-Based Platform Design Method (VBPDM) for product family design, which aims to satisfy a range of performance requirements using the smallest variation of the product designs in the family. In the first stage of the VBPDM, the product platform around which the product family is to be developed is identified. The product platform is common to all of the products in the family and represents the maximum standardization possible considering the variety of performance requirements that must be satisfied. To satisfy the range of performance requirements for the product family, a ranged set of solutions is found using variation-based modeling. A compromise Decision Support Problem (DSP) is formulated to solve the tradeoff between satisfying the variety requirement and maximizing platform commonality. Platform commonality is achieved by introducing a commonality goal that seeks to minimize the deviation of the input design variables while satisfying the range of performance requirements. Those design variables that show small deviations are held constant to form the product platform. In the second stage of the VBPDM, each individual product is designed around the common platform such that the functional requirements for each product in the family are best satisfied. As an example, the proposed method is used to develop a family of universal electric motors designed to meet a range of torque requirements. The results are compared against previous work on the same example.  相似文献   

15.
Mass customisation is a common trend in many industries, and the platform-based product family strategy is a widely used method for this purpose. While the platform strategy can reduce the cost of variety by sharing common assets such as components and production processes, it has the risk of losing market share owing to its limitation on diversity. A balance between commonality and variety needs to be achieved when designing platforms that are both efficient and effective. In this paper, we focus on developing a platform that is versatile for highly effective differentiation to increase market share, incorporating the preferences of customers for different kinds of diversity. By distinguishing preferred and non-preferred diversity and ignoring the unnecessary need for differentiation, a platform designer can increase commonality without loss of market share. Under the assumption that a versatile platform is composed of versatile components, we estimate the versatility of components to identify the versatile ones. The estimation method consists of two phases: the market analysis phase, for identifying which specifications are preferred to be differentiated, and the product analysis phase, for assessing how much impact the differentiation may have on the component. A high versatility score indicates that the corresponding component is suitable for being platformed since it is not likely to be changed to increase market share. At the same time, a low versatility score provides a clue for improving the product architecture. The proposed method was applied to computer mouse design and yielded a reasonable platform plan.  相似文献   

16.
The advent of mass customization and increased manufacturing competition has necessitated that many companies offer platform-oriented multiple product variants. Various design strategies such as Design for Variety and product family design have become critical in this respect. This paper provides a two-step approach to tackle the modular product family design problem. The first step performs a multi-objective optimization using a multi-agent framework to determine the Pareto-design solutions for a given module set. The proposed multi-agent framework is new and has built in flexibility to handle various constraints such as module compatibility during the optimization process. The second step performs post-optimization analysis that includes a novel application of the quality loss function to determine the optimal platform level for a related set of product families and their variants. The proposed method is applied to a product family design example to demonstrate its validity and effectiveness.  相似文献   

17.
A Method for Architecting Product Platforms   总被引:19,自引:1,他引:18  
Consider a group of products sharing common parts and assemblies. The products in question we call a product family, and the common elements, the platform. In this paper, we present a method for designing product platforms and the derived family that takes into consideration both the technical performance requirements as well as the cost of the product family. The design of a platform-based product family is formulated as a general optimization problem in which the advantages of designing a common platform must be balanced against the constraints of the individual product variants and constraints of the family as a whole. This optimization approach forms the basis for a practical implementation as an interactive, team-based negotiation model for designing a family of interplanetary spacecraft based on a common platform. The approach is used to consider and specify different subsystems that could be made common to all the missions. It is also used to evaluate the impact of those platform design decisions on the performance of the product family, and thus be able to select from among feasible platform designs.  相似文献   

18.
Previously, we introduced a new method for improving commonality in a highly customised, low volume product line using component product platforms. The method provides a bottom-up platform approach to redesign family members originally developed one-at-a-time to meet specific customer requirements. In this paper, we extend the method with an activity-based costing (ABC) model to specifically capture the manufacturing costs in the product line, including the cost associated with implementing a platform strategy. The valve yoke example is revisited in this paper, the customised ABC model is defined, two design strategy alternatives are addressed, and the new method is used to determine which alternative is better at resolving the trade-off between commonality, total cost, and product performance. The proposed method shows promise for creating a product platform portfolio from a set of candidate component platforms that is most cost-effective within an existing product line. The proposed method allows for arbitrary leveraging as it does not rely solely on the traditional vertical, horizontal, or beachhead strategies advocated for the market segmentation grid, and this is especially beneficial when applied to an existing product line that was developed one-at-a-time time such that artefact designs are inconsistent from one to another.  相似文献   

19.
The adoption of a modular product architecture for the bicycle allowed manufacturers to meet the simultaneous needs of product innovation and cost reduction. Such an approach however, has fragmented the industry into a series of largely independent segments that are primarily linked through the operation of market-based contracts. Active coordination between firms has been replaced by the embedded coordination that comes through modularity. The fragmentation of the industry on the basis of specialized capabilities has led to economic efficiencies and low barriers to entry for most segments of the industry. However, the lack of coordination has limited the industry's capability to make changes in the product architecture beyond the component level.  相似文献   

20.
霍康  尹娜  余月强  姚慧霞 《包装工程》2016,37(16):22-26
目的研究在家居一体化的形势下实现家居整体软装设计的有效途径。方法解析目前软装行业的发展状况和存在问题,以服务设计为导向,从用户需求出发,对产品标准化和设计模块化的特点进行系统分析,并且对影响整体软装模块化设计的产品结构、模块组合、资源配置和用户体验等多方面进行深入研究,探讨基于家居一体化的整体软装模块化的设计原则与应用策略。结论运用模块化设计原理,通过对产品平台建设和模块组合配置的研究,提出家居整体软装模块化设计的解决方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号