首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Multi-material topology optimization is a practical tool that allows for improved structural designs. However, most studies are presented in the context of continuum topology optimization – few studies focus on truss topology optimization. Moreover, most work in this field has been restricted to linear material behavior with limited volume constraint settings for multiple materials. To address these issues, we propose an efficient multi-material topology optimization formulation considering material nonlinearity. The proposed formulation handles an arbitrary number of candidate materials with flexible material properties, features freely specified material layers, and includes a generalized volume constraint setting. To efficiently handle such arbitrary volume constraints, we derive a design update scheme that performs robust updates of the design variables associated with each volume constraint independently. The derivation is based on the separable feature of the dual problem of the convex approximated primal subproblem with respect to the Lagrange multipliers, and thus the update of design variables in each volume constraint only depends on the corresponding Lagrange multiplier. Through examples in 2D and 3D, using combinations of Ogden-based, bilinear, and linear materials, we demonstrate that the proposed multi-material topology optimization framework with the presented update scheme leads to a design tool that not only finds the optimal topology but also selects the proper type and amount of material. The design update scheme is named ZPR (phonetically, zipper), after the initials of the authors’ last names (Zhang-Paulino-Ramos Jr.).  相似文献   

2.
This paper presents two multi-material interpolation schemes as direct generalizations of the well-known SIMP and RAMP material interpolation schemes originally developed for isotropic mixtures of two isotropic material phases. The new interpolation schemes provide generally applicable interpolation schemes between an arbitrary number of pre-defined materials with given (anisotropic) properties. The method relies on a large number of sparse linear constraints to enforce the selection of at most one material in each design subdomain. Topology and multi-material optimization is formulated within a unified parametrization.  相似文献   

3.
In this research, Method of Moving Asymptotes (MMA) is utilized for simultaneous shape and topology optimization of shell structures. It is shown that this approach is well matched with the large number of topology and shape design variables. The currently practiced technology for optimization is to find the topology first and then to refine the shape of structure. In this paper, the design parameters of shape and topology are optimized simultaneously in one go. In order to model and control the shape of free form shells, the NURBS (Non Uniform Rational B-Spline) technology is used. The optimization problem is considered as the minimization of mean compliance with the total material volume as active constraint and taking the shape and topology parameters as design variables. The material model employed for topology optimization is assumed to be the Solid Isotropic Material with Penalization (SIMP). Since the MMA optimization method requires derivatives of the objective function and the volume constraint with respect to the design variables, a sensitivity analysis is performed. Also, for alleviation of the instabilities such as mesh dependency and checkerboarding the convolution noise cleaning technique is employed. Finally, few examples taken from literature are presented to demonstrate the performance of the method and to study the effect of the proposed concurrent approach on the optimal design in comparison to the sequential topology and shape optimization methods.  相似文献   

4.
An algorithm has been developed which uses material as a discrete variable in multi-material topology optimization and thus provides an alternative to traditional methods using material interpolation and level-set approaches. The algorithm computes ‘pseudo-sensitivities’ of the objective and constraint functions to discrete material changes. These are used to rank elements, based on which a fraction of elements are selected for material ID modification during the optimization iteration. The algorithm is of general applicability and avoids frequent matrix factorizations so that it is applicable to large structural problems. In addition to the conventionally used evolutionary and morphogenesis approaches for iteration, a new iteration scheme of ‘resubstitution’ which combines the two approaches is presented. The application and functioning of the algorithm is demonstrated through case studies and comparisons with a few benchmark problems, showing its capability in providing mass-optimal topologies under stiffness constraints for various structural problems where multiple materials are considered.  相似文献   

5.
This paper presents an immersed boundary approach for level set topology optimization considering stress constraints. A constraint agglomeration technique is used to combine the local stress constraints into one global constraint. The structural response is predicted by the eXtended Finite Element Method. A Heaviside enrichment strategy is used to model strong and weak discontinuities with great ease of implementation. This work focuses on low-order finite elements, which given their simplicity are the most popular choice of interpolation for topology optimization problems. The predicted stresses strongly depend on the intersection configuration of the elements and are prone to significant errors. Robust computation of stresses, regardless of the interface position, is essential for reliable stress constraint prediction and sensitivities. This study adopts a recently proposed fictitious domain approach for penalization of displacement gradients across element faces surrounding the material interface. In addition, a novel XFEM informed stabilization scheme is proposed for robust computation of stresses. Through numerical studies the penalized spatial gradients combined with the stabilization scheme is shown to improve prediction of stresses along the material interface. The proposed approach is applied to the benchmark topology optimization problem of an L-shaped beam in two and three dimensions using material-void and material-material problem setups. Linear and hyperelastic materials are considered. The stress constraints are shown to be efficient in eliminating regions with high stress concentration in all scenarios considered.  相似文献   

6.
In this paper, the topology optimization design of the free vibrating continuum structures is formulated based on the element free Galerkin (EFG) method. Considering the relative density of nodes as design variable, and the maximization of the fundamental eigenvalue as an objective function, the mathematical formulation of the topology optimization model is developed using the solid isotropic microstructures with penalization (SIMP) interpolation scheme. The topology optimization problem is solved by the optimality criteria method. Finally, the feasibility and efficiency of the proposed method are illustrated with several 2D examples that are widely used in the topology optimization design.  相似文献   

7.
《Computers & Structures》2006,84(3-4):127-140
This paper presents a novel methodology, fuzzy tolerance multilevel programming approach, for applying fuzzy set theory and sequence multilevel method to multi-objective topology optimization problems of continuum structures undergoing multiple loading cases. Ridge-type nonlinear membership functions in fuzzy set theory are applied to embody fuzzy and uncertain characteristics essentially involved by the objective and constraint functions. Sequence multilevel method is used to characterize the different priorities of loading cases at different levels making contribution to the final optimum solution, which is practically beneficial to reduce the subjective influence transferred by using weighted approaches. The solid isotropic material with penalization (SIMP) is adopted as the density-stiffness interpolation scheme to relax the original optimization problem and indicate the dependence of material properties with element pseudo-densities. Sequential linear programming (SLP) is used as the optimizer to solve the multi-objective optimization problem formulated using fuzzy tolerance multilevel programming scheme. Numerical instabilities, such as checkerboards and mesh dependencies are summarized and a duplicate sensitivity filtering method, in favor of contributing to the mesh-dependent optimum designs, is subsequently proposed to regularize the singularity of the optimization problem. The validation of the methodologies presented in this work has been demonstrated by detailed examples of numerical applications.  相似文献   

8.
The present study proposes multi-scale topology optimization for polycrystalline microstructures applying a multi-phase field method. The objective function is to maximize the heat compliance of macrostructure and the equality constraint is the material volume of constituents in an alloy consisting of two components with different heat conductivity. Two-scale steady-state heat conduction problem based on a homogenization method is conducted. The Allen-Cahn non-conserved time evolution equation with the additional volume constraint scheme is employed as the optimization strategy for updating the crystal configuration. In the time evolution equation, sensitivities of objective function with respect to phase-field variables are considered to relate topology optimization to the multi-phase field method. It is verified from a series of numerical examples that the proposed method has great potential for the development of material design underlying polycrystalline structure.  相似文献   

9.
基于SIMP密度-刚度插值模型和移动渐近线方法,推导并建立了线弹性连续体结构刚度拓扑优化设计的数学模型.对中间密度材料进行研究,得出了惩罚因子的合理取值范围,分析了棋盘格式和网格依赖性等数值计算中存在的问题,并结合一种敏度过滤技术改善了这些问题.给出文中方法的程序流程,开发出二维结构的拓扑优化系统,通过一些经典的算例,证明了文中方法的有效性.  相似文献   

10.
This paper develops a non-probabilistic reliability-based topology optimization (NRBTO) framework for continuum structures under multi-dimensional convex uncertainties. Combined with the solid isotropic material with penalization (SIMP) model and the set-theoretical convex method, the uncertainty quantification (UQ) analysis is firstly conducted to obtain mathematical approximations and boundary laws of considered displacement responses. By normalization treatment of the limit-state function, a new quantified measure of the non-probabilistic reliability is then defined and further deduced by the principle of the hyper-volume ratio. For circumventing optimization difficulties arising from large-scale design variables, the adjoint vector scheme for sensitivity analysis of the reliability index with respect to design variables are discussed as well. Numerical applications eventually illustrate the applicability and the validity of the present problem statement as well as the proposed numerical techniques.  相似文献   

11.
This paper proposes an efficient and reliable topology optimization method that can obtain a black and white solution with a low objective function value within a few tens of iterations. First of all, a transformation of variables technique is adopted to eliminate the constraints on the design variables. After that, the optimization problem is considered as aiming at the minimum compliance in the space of design variables which is supposed to be solved by iterative method. Based on the idea of the original gradient projection method, the direct gradient projection method (DGP) is proposed. By projecting the negative gradient of objective function directly onto the hypersurface of the constraint, the most promising search direction from the current position is obtained in the vector space spanned by the gradients of objective and constraint functions. In order to get a balance between efficiency and reliability, the step size is constrained in a rational range via a scheme for step size modification. Moreover, a grey elements suppression technique is proposed to lead the optimization to a black and white solution at the end of the process. Finally, the performance of the proposed method is demonstrated by three numerical examples including both 2D and 3D problems in comparison with the typical SIMP method using the optimality criteria algorithm.  相似文献   

12.

This paper proposes a methodology for maximizing dynamic stress response reliability of continuum structures involving multi-phase materials by using a bi-directional evolutionary structural optimization (BESO) method. The topology optimization model is built based on a material interpolation scheme with multiple materials. The objective function is to maximize the dynamic stress response reliability index subject to volume constraints on multi-phase materials. To solve the defined topology optimization problems, the sensitivity of the dynamic stress response reliability index with respect to the design variables is derived for iteratively updating the structural topology. Subsequently, an optimization procedure based on the BESO method is developed. Finally, a series of numerical examples of both 2D and 3D structures are presented to demonstrate the effectiveness of the proposed approach.

  相似文献   

13.
14.
为将无网格法的优势集成到结构拓扑优化中,基于无网格局部Petrov-Galerkin(Meshless Local Petrov-Galerkin,MLPG)法进行板结构的拓扑优化.基于带惩罚的各向同性固体微结构(Solid Isotropic Microstructure with Penalization,SIMP...  相似文献   

15.
A new methodology for making design decisions of structures using multi-material optimum topology information is presented. Multi-material analysis contributes significant applications to enhance the bearing capacity and performance of structures. A method that chooses an appropriate material combination satisfying design stiffness requirement economically is currently needed. An alternative method of making design-decision is to utilize a multi-material topology optimization (MMTO) approach. This study provides a new computational design optimization procedure as a guideline to find the optimal multi-material design by considering structure strain energy and material cost. The MMTO problem is analyzed using an alternative active-phase approach. The procedure consists of three design steps. First, steel grid configurations and composite with material properties are defined as a given structure for automatic design decision-making (DDM). And then design criteria of the steel composites structure is given to be limited strain energy by designers and engineers. Second, topology changes in the automatic distribution of multi-steel materials combination and volume control of each material during optimization procedures are achieved and at the same time, their converged minimal strain energy is produced for each material combination. And third, the strain energy and material cost which is computed based on the material ratio in the combinations are used as design decision parameters. A study in constructional steel composites to produce optimal and economical multi-material designs demonstrates the efficiency of the present DDM methodology.  相似文献   

16.
Damping performance of a passive constrained layer damping (PCLD) structure mainly depends on the geometric layout and physical properties of the viscoelastic damping material. Properties such as the shear modulus of the damping material need to be tailored for improving the damping of the structures. This paper presents a topology optimization method for designing the microstructures in 2D, i.e., the structure of the periodic unit cell (PUC), of cellular viscoelastic materials with a prescribed shear modulus. The effective behavior of viscoelastic materials is derived through the use of a finite element based homogenization method. Only isotropic matrix material was considered and under such assumption it is found that the effective loss factor of viscoelastic material is independent of the geometrical configuration of the PUC. Based upon the idea of a Solid Isotropic Material with Penalization (SIMP) method of topology optimization, the relative material densities of the elements of the PUC are considered as the design variables. The topology optimization problem of viscoelastic cellular material with a prescribed property and with constraints on the isotropy and volume fraction is established. The optimization problem is solved using the sequential linear programming (SLP) method. Several examples of the design optimization of viscoelastic cellular materials are presented to demonstrate the validity of the method. The effectiveness of the design method is illustrated by comparing a solid and an optimized cellular viscoelastic material as applied to a cantilever beam with the passive constrained layer damping treatment.  相似文献   

17.
物质点拓扑变量法在柔性机构设计中的应用   总被引:1,自引:0,他引:1  
为克服柔性机构拓扑优化设计中的各类数值不稳定性问题,提出一种以物质点拓扑变量为设计变量的拓扑优化方法.物质点拓扑变量可视为节点密度概念的进一步拓展,基于修正网格无关性过滤函数提出了新的拓扑变量场插值形函数.基于弹簧模型,建立了柔性机构的多约束拓扑优化模型,推导了常见结构响应量的敏度表达式,采用移动渐进线法进行优化求解.最后通过二维数值算例验证了文中方法的可行性和有效性.  相似文献   

18.
A topology optimization approach based on the boundary element method (BEM) and the optimality criteria (OC) method is proposed for the optimal design of sound absorbing material distribution within sound barrier structures. The acoustical effect of the absorbing material is simplified as the acoustical impedance boundary condition. Based on the solid isotropic material with penalization (SIMP) method, a topology optimization model is established by selecting the densities of absorbing material elements as design variables, volumes of absorbing material as constraints, and the minimization of sound pressure at reference surface as design objective. A smoothed Heaviside-like function is proposed to help the SIMP method to obtain a clear 0–1 distribution. The BEM is applied for acoustic analysis and the sensitivities with respect to design variables are obtained by the direct differentiation method. The Burton–Miller formulation is used to overcome the fictitious eigen-frequency problem for exterior boundary-value problems. A relaxed form of OC is used for solving the optimization problem to find the optimal absorbing material distribution. Numerical tests are provided to illustrate the application of the optimization procedure for 2D sound barriers. Results show that the optimal distribution of the sound absorbing material is strongly frequency dependent, and performing an optimization in a frequency band is generally needed.  相似文献   

19.
20.
Cui  Mingtao  Luo  Chenchun  Li  Guang  Pan  Min 《Engineering with Computers》2021,37(2):855-872

In recent years, the parameterized level set method (PLSM) has attracted widespread attention for its good stability, high efficiency and the smooth result of topology optimization compared with the conventional level set method. In the PLSM, the radial basis functions (RBFs) are often used to perform interpolation fitting for the conventional level set equation, thereby transforming the iteratively updating partial differential equation (PDE) into ordinary differential equations (ODEs). Hence, the RBFs play a key role in improving efficiency, accuracy and stability of the numerical computation in the PLSM for structural topology optimization, which can describe the structural topology and its change in the optimization process. In particular, the compactly supported radial basis function (CS-RBF) has been widely used in the PLSM for structural topology optimization because it enjoys considerable advantages. In this work, based on the CS-RBF, we propose a PLSM for structural topology optimization by adding the shape sensitivity constraint factor to control the step length in the iterations while updating the design variables with the method of moving asymptote (MMA). With the shape sensitivity constraint factor, the updating step length is changeable and controllable in the iterative process of MMA algorithm so as to increase the optimization speed. Therefore, the efficiency and stability of structural topology optimization can be improved by this method. The feasibility and effectiveness of this method are demonstrated by several typical numerical examples involving topology optimization of single-material and multi-material structures.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号